Molecular mechanical calculation on cyclodextrin inclusion complexes. I. The structures of .ALPHA.-cyclodextrin complexes estimated by van der waals interaction energy calculation.
スポンサーリンク
概要
- 論文の詳細を見る
The geometries of inclusion complexes of α-cyclodextrin (α-CD) with krypton, methanol, 1-propanol, and <I>p</I>-nitrophenol were estimated on the basis of the calculation of energies (<I>E</I><SUB>vdw</SUB>) due to the van der Waals interactions between the CD and the guest molecules. The <I>E</I><SUB>vdw</SUB> values were computed by the use of Hill's potential equation. A spatial relationship at which the <I>E</I><SUB>vdw</SUB> value became minimal was in good agreement with that observed by X-ray crystallography for such a guest molecule as 1-propanol or <I>p</I>-nitrophenol, which is large in size and less polar. On the other hand, a significantly large deviation was found between the observed and the calculated geometries of the inclusion complex in such polar and/or small guest molecules as methanol and krypton.
- 公益社団法人 日本化学会の論文
著者
関連論文
- Iron Chelation by Chlorogenic Acid as a Natural Antioxidant
- Retarding Effects of Cyclodextrins on the Decomposition of Organic Isothiocyanates in an Aqueous Solution
- Effects of Alkali and Alkaline Earth Metals on the Kolbe-Schmitt Reaction
- Oxidative Depolymerization of Chitosan by Hydroxyl Radical
- Regioselective Carboxylation of Phenols with Carbon Dioxide
- Retardation of the Molecular Rotation of p-Nitrophenolate Ion in the Cavity of a Positively Charged Derivative of α-Cyclodextrin by Electrostatic Interactions
- Thermodynamic Parameters for the Complexation of the Pyridinio Derivatives of Cyclodextrins with Some Inorganic Anions in D_2O Solution
- Complexes of Copper(II) with Cyclodextrins
- The Formation and Structure of Copper(II) Complexes with Cyclodextrins in an Alkaline Solution
- Effects of Inorganic Salts on the Dissociation of a Complex of β-Cyclodextrin with an Azo Dye in an Aqueous Solution
- The adsorption of .ALPHA.-and .BETA.-cyclodextrins on the dropping mercury electrode in an aqueous solution.
- Polarography of Halides in Dimethylformamide. III. The Chloride Ion, the Trichloromercurate Ion, and Mercuric Chloride
- Polarography of Halides in Dimethylformamide. II. The Iodide Ion, the Triiodomercurate Ion, and Mercuric Iodide
- Formation of Inclusion Compounds of β-Cyclodextrin with Hydroperoxides
- Molecular mechanical calculation on cyclodextrin inclusion complexes. I. The structures of .ALPHA.-cyclodextrin complexes estimated by van der waals interaction energy calculation.
- Polarography of Halides in Dimethylformamide. IV. The Stability Constants of the Halo Complexes of Mercury (II)
- Polarography of Halides in Dimethylformamide. V. Bromine and the Tribromide Ion
- The microenvironmental effect of cyclodextrin on the acid dissociation of some azo dyes in aqueous solutions.
- The binding and catalytic properties of a positively charged cyclodextrin.
- Polarographic Studies of the Anodic Oxidation of Mercury. II. The Anodic Adsorption Wave of Ethylamine in N,N-Dimethylformamide
- Polarographic Studies of the Anodic Oxidation of Mercury. III. The Adsorption of the Mercury(II) Complexes of Ammonia and Alkylamines on the Mercury Electrode Surface
- Polarography of Halides in Dimethylformamide. VI. The Formation of the Benzhydryl Radical from Benzhydryl Bromide and Its Subsequent Reduction at the Dropping Mercury Electrode
- The retardation of the benzidine rearrangement of hydrazobenzene by cyclodextrins.
- Stabilization of Hydroperoxides by Means of the Formation of Inclusion Compounds with β-Cyclodextrin