Influence of Manufacturing Factors on Physical Stability and Solubility of Solid Dispersions Containing a Low Glass Transition Temperature Drug
スポンサーリンク
概要
- 論文の詳細を見る
In this study, we investigated the effect of manufacturing factors such as particle size, water content and manufacturing method on the physical stability and solubility of solid dispersion formulations of a low-glass-transition-temperature (Tg) drug. Solid dispersions were prepared from polyvinylpyrrolidone (PVP) and hydroxypropylmethylcellulose (HPMC) by hot melt extrusion or spray drying. Water content of solid dispersions prepared by hot melt extrusion determined by dynamic moisture sorption measurement was increased drastically with relative humidity below a certain level of particle size. The blends with a lower water content (0.8%) prepared by hot melt extrusion during storage were more stable than those with a higher water content (3.5%) prepared by spray drying, which caused rapid recrystallization. Physical stability in the hot melt blends may be attributed to reduced molecular mobility due to a higher Tg. Dissolution study revealed that solid dispersions prepared by hot melt extrusion with the smallest particle size showed decreased solubility, attributed to reduced wetting properties (surface energy), which is not predictable by the Noyes–Whitney equation. Taken together, these results indicate that the control of particle size concerned in water content or wetting properties is critical to ensuring the physical stability or enhancing solubility of low-Tg drugs. Further, hot melt extrusion, which can reduce water content, is a suitable manufacturing method for solid dispersions of low-Tg drugs.
著者
-
Maitani Yoshie
Institute Of Medicinal Chemistry Hoshi University
-
Sako Kazuhiro
Pharmaceutical Res. And Technol. Labs Astellas Pharma Inc.
-
Sakurai Atsushi
Pharmaceutical Research and Technology Labs, Astellas Pharma Inc.
-
Sako Kazuhiro
Pharmaceutical Research and Technology Labs, Astellas Pharma Inc.
関連論文
- Non-ionic Surfactant Modified Cationic Liposomes Mediated Gene Transfection in Vitro and in the Mouse Lung(Biopharmacy)
- Development of an in Vitro Drug Release Assay of PEGylated Liposome Using Bovine Serum Albumin and High Temperature
- Surface Properties of Lipoplexes Modified with Mannosylerythritol Lipid-A and Tween 80 and Their Cellular Association
- Combination of RET siRNA and irinotecan inhibited the growth of medullary thyroid carcinoma TT cells and xenografts via apoptosis
- The Distribution of mRNA Expression and Protein after Hydrodynamic Injection of Transgene in Mice(Biopharmacy)
- NaCl Induced High Cationic Hydroxyethylated Cholesterol-Based Nanoparticle-Mediated Synthetic Small Interfering RNA Transfer into Prostate Carcinoma PC-3 Cells(Biopharmacy)
- Liver Targeting Liposomes Containing β-Sitosterol Glucoside with Regard to Penetration-Enhancing Effect on HepG2 Cells
- Low-Molecular-Weight Polyethylenimine Enhanced Gene Transfer by Cationic Cholesterol-Based Nanoparticle Vector(Biopharmacy)
- DNA/Lipid Complex Incorporated with Fibronectin to Cell Adhesion Enhances Transfection Efficiency in Prostate Cancer Cells and Xenografts(Biopharmacy)
- Design, Synthesis and Gene Delivery Efficiencies of Novel Oligo-Arginine Linked PEG-Lipid : Effect of Oligo-Arginine Length
- Folate-Linked Lipid-Based Nanoparticles Deliver a NFkB Decoy into Activated Murine Macrophage-Like RAW264.7 Cells(Biopharmacy)
- Artificial Lipids Stabilized Camptothecin Incorporated in Liposomes(Miscellaneous)
- Enhanced antitumor efficacy of folate-linked liposomal doxorubicin with TGF-β type I receptor inhibitor
- Two-step transcriptional amplification-lipid-based nanoparticles using PSMA or midkine promoter for suicide gene therapy in prostate cancer
- Factors Affecting the Absorption of Nilvadipine from Disintegration-Controlled Matrix Tablet in Dogs
- Antitumor Effect of Liposomal Histone Deacetylase Inhibitor-Lipid Conjugates in Vitro
- Preparation and in Vivo Evaluation of Liposomal Everolimus for Lung Carcinoma and Thyroid Carcinoma
- Polymer Combination Increased Both Physical Stability and Oral Absorption of Solid Dispersions Containing a Low Glass Transition Temperature Drug: Physicochemical Characterization and in Vivo Study
- Influence of Manufacturing Factors on Physical Stability and Solubility of Solid Dispersions Containing a Low Glass Transition Temperature Drug
- Enhanced Plasmid DNA Transfer into Tumor Cells by Nanoparticle Composed of Cholesteryl Triamine and Diamine