Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber
スポンサーリンク
概要
- 論文の詳細を見る
Based on the overlap integral of electromagnetic fields in neighboring cores, a calculating method is proposed for obtaining the coupling coefficient between two adjacent trench-assisted non-identical cores. And a kind of heterogeneous trench-assisted multi-core fiber (Hetero-TA-MCF) with 12 cores is proposed to achieve large effective area (A_[eff]) and high density of cores. As bending radius becomes larger than 50 mm, the crosstalk value at 1550-nm wavelength of the Hetero-TA-MCF is about -42 dB after 100-km propagation and the A_[eff] of this Hetero-TA-MCF can reach 100μm2.
- 2012-07-02
著者
-
Saitoh Kunimasa
Graduate School of Information Science and Technology, Hokkaido University
-
Koshiba Masanori
Graduate School Of Information Sci. And Technol. Hokkaido Univ.
-
Saitoh Kunimasa
Graduate School Of Information Sci. And Technol. Hokkaido Univ.
-
Matsuo Shoichiro
Fujikura Ltd. Sakura‐shi Jpn
-
Saitoh Kunimasa
Division Of Media And Network Technology Graduate School Of Information Science And Technology Hokka
-
Takenaga Katsuhiro
Optics And Electrical Laboratory Fujikura Ltd.
-
Tu Jiajing
Graduate School Of Information Science And Technology Hokkaido University
-
TU Jiajing
Division of Media and Network Technologies, Hokkaido University
-
SAITOH Kunimasa
Division of Media and Network Technologies, Hokkaido University
関連論文
- Design of effectively single-mode leakage channel fibers with large mode area and low bending loss
- Fundamental Characteristics of Localized Acoustic Modes in Photonic Crystal Fibers(Optical Fibers, Cables and Fiber Devices, Recent Progress in Optoelectronics and Communications)
- Detailed theoretical investigation of bending properties in solid-core photonic bandgap fibers
- Photonic Bandgap Fiber Filter Design Based on Nonproximity Resonant Coupling Mechanism
- Realistic Design of Large-Hollow-Core Photonic Band-Gap Fibers With Suppressed Higher Order Modes and Surface Modes
- Design of effectively single-mode air-core photonic bandgap fiber with improved transmission characteristics for the realization of ultimate low loss waveguide
- Design of photonic band gap fibers with suppressed higher-order modes: Towards the development of effectively single mode large hollow-core fiber platforms
- Non-proximity resonant tunneling in multi-core photonic band gap fibers: An efficient mechanism for engineering highly-selective ultra-narrow band pass splitters
- The role of artificial defects for engineering large effective mode area, flat chromatic dispersion, and low leakage losses in photonic crystal fibers: Towards high speed reconfigurable transmission platforms
- A novel approach for designing photonic crystal fiber splitters with polarization-independent propagation characteristics