C-3-135 Applicability of Classical Optical Fiber Theory to Holey Fibers
スポンサーリンク
概要
- 論文の詳細を見る
- 社団法人電子情報通信学会の論文
- 2004-03-08
著者
-
Koshiba Masanori
Graduate School Of Engineering Hokkaido University
-
Saitoh Kunimasa
Graduate School of Information Science and Technology, Hokkaido University
-
Saitoh K
Graduate School Of Engineering Hokkaido University
-
Saitoh Kunimasa
Graduate School Of Engineering Hokkaido University
関連論文
- Design of effectively single-mode leakage channel fibers with large mode area and low bending loss
- Fundamental Characteristics of Localized Acoustic Modes in Photonic Crystal Fibers(Optical Fibers, Cables and Fiber Devices, Recent Progress in Optoelectronics and Communications)
- Detailed theoretical investigation of bending properties in solid-core photonic bandgap fibers
- Realistic Design of Large-Hollow-Core Photonic Band-Gap Fibers With Suppressed Higher Order Modes and Surface Modes
- Design of effectively single-mode air-core photonic bandgap fiber with improved transmission characteristics for the realization of ultimate low loss waveguide
- Design of photonic band gap fibers with suppressed higher-order modes: Towards the development of effectively single mode large hollow-core fiber platforms
- Full-vectorial coupled mode theory for the evaluation of macro-bending loss in multimode fibers. application to the hollow-core photonic bandgap fibers
- Numerical Modeling of Cryogenic Temperature Sensors Based on Plasmonic Oscillations in Metallic Nanoparticles Embedded Into Photonic Crystal Fibers
- Coupling Characteristics of Multicore Photonic Crystal Fiber-Based 1 × 4 Power Splitters
- Thermooptical Sensitivity Analysis of Highly Birefringent Polarimetric Sensing Photonic Crystal Fibers With Elliptically Elongated Veins
- C-3-87 Multi-Core Photonic Band Gap Fiber Splitters Based on Highly-Selective Non-Proximity Resonant Coupling
- C-3-82 Thermo-Optical Sensitivity of Polarimetric-Sensing Photonic Crystal Fibers
- C-3-136 Modeling of Realistic Air-Core Photonic Band-Gap Fibers
- Understanding formation of photonic bandgap edge for maximum propagation angle in all-solid photonic bandgap fibers
- Multiple resonant coupling mechanism for suppression of higher-order modes in all-solid photonic bandgap fibers with heterostructured cladding
- Novel multi-core fibers for mode division multiplexing: proposal and design principle
- C-3-135 Applicability of Classical Optical Fiber Theory to Holey Fibers
- Coefficients of Coupled-Mode Equations for Interdigital Transducers with Solid Electrodes of Gold, Silver, Tantalum, or Tungsten Alloy on a 50°Y-25°X La_3Ga_5SiO_ Substrate
- Coefficients of Coupled-Mode Equations for Reversal of Directivity Transducers on a 50〓Y-25〓XLa_3Ga_5SiO_Substrate
- Analysis of an Electrode-Width-Difference-Reversal-of Directivity Transducer on a La_3Ga_Nb_O_ Substrate
- Coefficients of Coupled-Mode Equations for a Natural-Single-Phase-Unidirectional Transducer and an Electrode-Width-Difference-Reversal-of-Directivity Transducer on a 50°Y-24°X La_3Ga_5SiO_Substrate
- Parameters of Coupling-of-Modes Equations for a Natural Single-Phase-Unidirectional Transducer on a La_3Ga_Nb_O_Substrate
- Parameters in the Coupling-of-Modes Equations for a Natural Single-Phase Unidirectional Transducer and a Transduction Center Shift Reversal of Directivity Transducer on a La_3Ga_5SiO_ Substrate
- An Analysis of Excitation Characteristics of Interdigital Transducers for Surface Acoustic Waves : SAW and Communication Devices
- Investigation on multi-core fibers with large Aeff and low micro bending loss
- Crosstalk behavior of cores in multi-core fiber under bent condition
- An Analysis of Periodic Leaky Surface Acoustic Waveguides Using the Hybrid Finite Element Method
- Coupled-Mode Equations for Interdigital Transducers for Leaky Surface Acoustic Waves
- Multiple resonant coupling mechanism for higher-order-modes' suppression in all-solid photonic bandgap fibers with heterostructured cladding (光ファイバ応用技術)
- Multiple resonant coupling mechanism for higher-order-modes' suppression in all-solid photonic bandgap fibers with heterostructured cladding
- An Investigation on Crosstalk in Multi-Core Fibers by Introducing Random Fluctuation along Longitudinal Direction
- Large-effective-area ten-core fiber with cladding diameter of about 200 μm
- Multi- core fiber design and analysis : coupled-mode theory and coupled-power theory
- A large effective area multi-core fiber with an optimized cladding thickness
- Finite-element time-domain beam propagation method with perfectly matched layer for electron waveguide simulations
- Heterogeneous multi-core fibers : proposal and design principle
- Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber
- B-13-44 Low Crosstalk Heterogeneous Multi-Core Fibers under Bending Condition
- Coupled-Mode Equations for Interdigital Transducers for Leaky Surface Acoustic Waves
- A bend-insensitive heterogeneous trench-assisted multi-core fiber with large effective area