Selective mode excitation and discrimination of four-core homogeneous coupled multi-core fiber
スポンサーリンク
概要
- 論文の詳細を見る
Coupled modes of homogeneous coupled multi-core fiber are selectively excited and discriminated utilizing the difference of equivalent propagation angle. To quantatively evaluate the extinction ratio (selectivity) of adjacent modes, a new mode discrimination technique is developed by measuring the visibility of far-field patterns under small change of wavelength of the launching beam. The peak angles of discriminated far-field patterns show a strong correlation with the incident angle of the launching beam, which means that the coupled modes were selectively excited and discriminated.
- 2011-12-12
著者
-
Matsuo Shoichiro
Fujikura Ltd. Sakura‐shi Jpn
-
Tanigawa Shoji
Optics And Electrical Laboratory Fujikura Ltd.
-
Takenaga Katsuhiro
Optics And Electrical Laboratory Fujikura Ltd.
関連論文
- Low-Bending-Loss and Low-Splice-Loss Single-Mode Fibers Employing a Trench Index Profile(Optical Fibers, Cables and Fiber Devices, Recent Progress in Optoelectronics and Communications)
- Holey Fibers for Low Bending Loss (Optoelectronics)
- Crosstalk behavior of cores in multi-core fiber under bent condition
- Crosstalk behavior of multi-core fiber with structural parameter drift in longitudinal direction
- An Investigation on Crosstalk in Multi-Core Fibers by Introducing Random Fluctuation along Longitudinal Direction
- Large-effective-area ten-core fiber with cladding diameter of about 200 μm
- Multi- core fiber design and analysis : coupled-mode theory and coupled-power theory
- A large effective area multi-core fiber with an optimized cladding thickness
- Selective mode excitation and discrimination of four-core homogeneous coupled multi-core fiber
- Yb-Doped and Hybrid-Structured Solid Photonic Bandgap Fibers and Linearly-Polarized Fiber Lasers Oscillating above 1160nm
- Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber
- B-13-44 Low Crosstalk Heterogeneous Multi-Core Fibers under Bending Condition
- A bend-insensitive heterogeneous trench-assisted multi-core fiber with large effective area