Koshiba Masanori | Graduate School Of Information Sci. And Technol. Hokkaido Univ.
スポンサーリンク
概要
関連著者
-
Koshiba Masanori
Graduate School Of Information Sci. And Technol. Hokkaido Univ.
-
Saitoh Kunimasa
Graduate School Of Information Sci. And Technol. Hokkaido Univ.
-
Saitoh Kunimasa
Graduate School of Information Science and Technology, Hokkaido University
-
Saitoh Kunimasa
Division Of Media And Network Technology Graduate School Of Information Science And Technology Hokka
-
SAITOH Kunimasa
Division of Media and Network Technologies, Hokkaido University
-
Florous Nikolaos
Graduate School Of Information Science And Technology Hokkaido University
-
Takenaga Katsuhiro
Optics And Electrical Laboratory Fujikura Ltd.
-
Koshiba Masanori
Graduate School Of Engineering Hokkaido University
-
Saitoh Kunimasa
Graduate School Of Engineering Hokkaido University
-
Matsuo Shoichiro
Fujikura Ltd. Sakura‐shi Jpn
-
Tanigawa Shoji
Optics And Electrical Laboratory Fujikura Ltd.
-
Matsuo Shoichiro
Optics And Electrical Laboratory Fujikura Ltd.
-
Saitoh Kunimasa
Division Of Electronics And Information Engineering Graduate School Of Engineering Hokkaido Universi
-
Koshiba Masanori
Division Of Electronics And Information Engineering Faculty Of Engineering Hokkaido University
-
Arakawa Yoko
Optics And Electrical Laboratory Fujikura Ltd.
-
TSUCHIDA Yukihiro
Furukawa Electric
-
SAITOH Kunimasa
Division of Electronics and Information Engineering, Hokkaido University
-
KOSHIBA Masanori
Division of Electronics and Information Engineering, Hokkaido University
-
Florous Nikolaos
Division of Media and Network Technology, Graduate School of Information Science and Technology Hokk
-
Tu Jiajing
Graduate School Of Information Science And Technology Hokkaido University
-
TU Jiajing
Division of Media and Network Technologies, Hokkaido University
-
Florous Nikolaos
Graduate School of Information Science and Technology, Hokkaido University
-
MURAO Tadashi
Graduate School of Information Science and Technology, Hokkaido University
-
Matsuo Shoichiro
Optics and Electronics Laboratory, Fujikura Ltd.
-
Takenaga Katsuhiro
Optics and Electronics Laboratory, Fujikura Ltd.
-
Arakawa Yoko
Optics and Electronics Laboratory, Fujikura Ltd.
-
Sasaki Yusuke
Optics and Electronics Laboratory, Fujikura Ltd.
-
Tanigawa Shoji
Optics and Electronics Laboratory, Fujikura Ltd.
-
Tsuchida Yukihiro
Graduate School of Information Science and Technology, Hokkaido University
-
MUKASA Kazunori
Furukawa Electric
-
IMAMURA Katsunori
Furukawa Electric
-
SUGIZAKI Ryuichi
Furukawa Electric
-
ENOMORI Ikumi
Graduate School of Information Science and Technology, Hokkaido University
-
Shima Kensuke
Optics And Electronics Laboratory Fujikura Ltd.
-
Skorobogatiy Maksim
Ecole Polytechnique de Montreal, Genie Physique
-
Kitabayashi Tomoharu
Optics And Electronics Laboratory Fujjkura Ltd.
-
Guan Ning
Optics And Electronics Laboratory Fujikura Ltd.
-
Enomori Ikumi
Graduate School Of Information Science And Technology Hokkaido University
-
HIMENO Kuniharu
Optical and Electronics Laboratory, Fujikura Ltd.
-
Sugizaki Ryuich
Furukawa Electric
-
Fujimaki Munehisa
Optics And Electronics Laboratory Fujikura Ltd.
-
Guan Ning
Optics And Electrical Laboratory Fujikura Ltd.
-
Himeno Kuniharu
Optics And Electrical Laboratory Fujikura Ltd.
-
KASHIWAGI Masahiro
Optics and Electrical Laboratory, Fujikura Ltd.
-
ICHII Kentaro
Optics and Electrical Laboratory, Fujikura Ltd.
-
Ichii Kentaro
Optics And Electrical Laboratory Fujikura Ltd.
-
Shima Kensuke
Optics And Electrical Laboratory Fujikura Ltd.
-
Fujimaki Munehisa
Optics And Electrical Laboratory Fujikura Ltd.
-
Kitabayashi Tomoharu
Optics And Electrical Laboratory Fujikura Ltd.
-
Tu Jiajing
Graduate School of Information Science and Technology, Hokkaido University
-
Koshiba Masanori
Division of Media and Network Technologies, Hokkaido University
-
F1orous Nikolaos
Division of Media and Network Technology, Graduate School of Information Science and Technology Hokkaido University
著作論文
- Design of effectively single-mode leakage channel fibers with large mode area and low bending loss
- Fundamental Characteristics of Localized Acoustic Modes in Photonic Crystal Fibers(Optical Fibers, Cables and Fiber Devices, Recent Progress in Optoelectronics and Communications)
- Detailed theoretical investigation of bending properties in solid-core photonic bandgap fibers
- Photonic Bandgap Fiber Filter Design Based on Nonproximity Resonant Coupling Mechanism
- Realistic Design of Large-Hollow-Core Photonic Band-Gap Fibers With Suppressed Higher Order Modes and Surface Modes
- Design of effectively single-mode air-core photonic bandgap fiber with improved transmission characteristics for the realization of ultimate low loss waveguide
- Design of photonic band gap fibers with suppressed higher-order modes: Towards the development of effectively single mode large hollow-core fiber platforms
- Non-proximity resonant tunneling in multi-core photonic band gap fibers: An efficient mechanism for engineering highly-selective ultra-narrow band pass splitters
- The role of artificial defects for engineering large effective mode area, flat chromatic dispersion, and low leakage losses in photonic crystal fibers: Towards high speed reconfigurable transmission platforms
- A novel approach for designing photonic crystal fiber splitters with polarization-independent propagation characteristics
- A novel approach for designing photonic crystal fiber splitters with polarization-independent propagation characteristics
- A novel approach for designing photonic crystal fiber splitters with polarization-independent propagation characteristics
- Full-vectorial coupled mode theory for the evaluation of macro-bending loss in multimode fibers. application to the hollow-core photonic bandgap fibers
- Numerical Modeling of Cryogenic Temperature Sensors Based on Plasmonic Oscillations in Metallic Nanoparticles Embedded Into Photonic Crystal Fibers
- Theoretical Prediction of Thermooptical and Structurally Disordered Sensitivities in Metallo-Dielectric Photonic Crystals
- Fluidic Sensors Based on Photonic Crystal Fiber Gratings: Impact of the Ambient Temperature
- Coupling Characteristics of Multicore Photonic Crystal Fiber-Based 1 × 4 Power Splitters
- Thermooptical Sensitivity Analysis of Highly Birefringent Polarimetric Sensing Photonic Crystal Fibers With Elliptically Elongated Veins
- Apodized photonic crystal waveguide gratings
- Design and analysis of a broadband dispersion compensating photonic crystal fiber Raman amplifier operating in S-band
- C-3-87 Multi-Core Photonic Band Gap Fiber Splitters Based on Highly-Selective Non-Proximity Resonant Coupling
- C-3-82 Thermo-Optical Sensitivity of Polarimetric-Sensing Photonic Crystal Fibers
- The impact of elliptical deformations for optimizing the performance of dual-core fluorine-doped photonic crystal fiber couplers
- Chromatic dispersion profile optimization of dual-concentric-core photonic crystal fibers for broadband dispersion compensation
- Design of narrow band-pass filters based on the resonant-tunneling phenomenon in multi-core photonic crystal fibers
- Understanding formation of photonic bandgap edge for maximum propagation angle in all-solid photonic bandgap fibers
- Multiple resonant coupling mechanism for suppression of higher-order modes in all-solid photonic bandgap fibers with heterostructured cladding
- Design and characterization of single-mode holey fibers with low bending losses
- Endlessly single-mode holey fibers: the influence of core design
- Investigation on multi-core fibers with large Aeff and low micro bending loss
- Crosstalk behavior of cores in multi-core fiber under bent condition
- Multiple resonant coupling mechanism for higher-order-modes' suppression in all-solid photonic bandgap fibers with heterostructured cladding (光ファイバ応用技術)
- Multiple resonant coupling mechanism for higher-order-modes' suppression in all-solid photonic bandgap fibers with heterostructured cladding
- Crosstalk behavior of multi-core fiber with structural parameter drift in longitudinal direction
- An Investigation on Crosstalk in Multi-Core Fibers by Introducing Random Fluctuation along Longitudinal Direction
- Large-effective-area ten-core fiber with cladding diameter of about 200 μm
- Multi- core fiber design and analysis : coupled-mode theory and coupled-power theory
- A large effective area multi-core fiber with an optimized cladding thickness
- Yb-Doped and Hybrid-Structured Solid Photonic Bandgap Fibers and Linearly-Polarized Fiber Lasers Oscillating above 1160nm
- Design and analysis of large-effective-area heterogeneous trench-assisted multi-core fiber
- A bend-insensitive heterogeneous trench-assisted multi-core fiber with large effective area (光通信システム)
- B-13-44 Low Crosstalk Heterogeneous Multi-Core Fibers under Bending Condition
- A bend-insensitive heterogeneous trench-assisted multi-core fiber with large effective area