2A1-L03 大規模地図検索のためのマルチスケールBag-Of-Features手法(ロボットビジョン)
スポンサーリンク
概要
- 論文の詳細を見る
Retrieving a large collection of environment maps built by mapper robots is a key problem for mobile robot self-localization. This map retrieval problem is addressed from a novel perspective of a multi-scale Bag-Of-Features (BOF) approach in the paper. In general, multi-scale approach is advantageous in capturing both the global structure and the local details of a given map. On the other hand, BOF map retrieval is advantageous in its compact map representation as well as efficient map retrieval using an inverted file system. Combining the advantages of both approaches is the main contribution of this paper. Our approach is based on multi-cue BOF as well as BOF dimension reduction, and achieves efficiency and compactness of the map retrieval system. Retrieval performance is evaluated using a large collection of point feature maps.
- 2011-05-26
著者
関連論文
- 1P1-E10 3次元ポールスター特徴に基づく高速マップマッチング(3次元計測/センサフュージョン)
- 1P1-L12 改良型RANSACマップマッチングに基づく辞書式地図圧縮(移動ロボットのための視覚)
- 1P1-E09 Single-View 3D再構築に基づく頑健な自己位置推定(3次元計測/センサフュージョン)
- 2A1-L03 大規模地図検索のためのマルチスケールBag-Of-Features手法(ロボットビジョン)