コンピュータ大貧民における高速な相手モデル作成と精度向上
スポンサーリンク
概要
- 論文の詳細を見る
UEC コンピュータ大貧民大会ではモンテカルロ法を用いたクライアントが優勝している.そこでプレイアウト中の相手着手を実際の着手に近づけることでモンテカルロ法によるクライアントの強化を考える.本研究ではゲーム中の実際の相手着手を学習する方法としてナイーブベイズを用いる.これにより高速な相手のモデル化を行う.さらに、学習素性の工夫により精度の向上を行った.この結果,作成されたモデルの精度は過去の優勝クライアント snowl に対し,4 割程度の近似ができた.
- 2013-12-04
著者
関連論文
- 強化学習によるゲームの評価関数の獲得
- 強化学習による評価関数の獲得における報酬設定について
- 深さに応じたバイアスによるモンテカルロ木探索の効率化
- 分割位置を教師値としたテキストの段落分割
- 文章の識別モデルを状態とするHMMによるテキストの段落分割
- 連続型HMMを用いたテキストセグメンテーション(基礎技術,自然言語処理)
- 連続型HMMを用いたテキストセグメンテーション(基礎技術,自然言語処理)
- ウエブからの情報抽出とその応用における課題(招待講演,自然言語処理)
- ウエブからの情報抽出とその応用における課題(招待講演,自然言語処理)
- D-5-11 Webニュースに対するコメントの感情推定(D-5.言語理解とコミュニケーション,一般セッション)
- 言語モデルの違いによるHMMを用いたテキストセグメンテーションの性能比較
- 検索ホットワードとブログ系テキストの関係を探る(分析,第2回テキストマイニング・シンポジウム)
- コンピュータ大貧民における高速な相手モデル作成と精度向上
- コンピュータ大貧民における高速な相手モデル作成と精度向上
- マイクロブログのインフォーマルな書き込みに対する自動分類
- ウエブテキストの背後にあるもの