時系列データからの潜在的構造変化検出(招待講演,時系列パターン認識)
スポンサーリンク
概要
- 論文の詳細を見る
本稿では、時系列データからの変化検知の問題を考える。変化検知はデータの背後にある確率モデルが変化したときに、それを検出する問題である。それは、Novelty Detection(新規性検知)やAnomaly Detection (異常検知)といった価値ある知識の発見に結びつき、データマイニング分野でも重要な問題として捉えられている。特に、確率モデルが離散的な潜在構造(たとえば、潜在変数の数やクラスター構造など)をもち、その変化を捉えるための手法が近年、1つの潮流として発展している。本稿では、その1つの統一的なアプローチとして、動的モデル選択と呼ばれる情報理論的アプローチを紹介し、関連するアルゴリズムと合わせて、「潜在的構造変化検出」の理論的体系を示す。また、本アプローチをマーケテムイングやソーシャルネットワーク、セキュリティ分野における知識発見に応用し、深い知識発見をもたらす例を示す。
- 2012-02-02
著者
-
山西 健司
NECインターネットシステム研究所
-
山西 健司
東京大学情報理工学系研究科
-
山西 健司
東京大学大学院情報理工学系研究科数理情報学専攻
-
山西 健司
東京大学大学院情報理工学系研究科
-
山西 健司
東京大学大学院 情報理工学系研究科
関連論文
- 単調な関数をふくむ確率規則の学習について
- 5. 統計的異常検出3手法(最新!データマイニング手法)
- 正規化最尤符号化に基づくグラフクラスタリング(一般講演(符号化・モデル選択,機械学習とその応用)
- セキュリティ・マイニング (セキュリティ特集)
- 統計的外れ値検出によるデータマイニングとネットワーク侵入検出への応用(新しいトラヒックモデルと性能評価及び一般)
- データマイニングにおける統計的外れ値検出(インダストリアルマテリアルズ)
- 情報論的学習理論の最近の発展について : Latent Dynamicsを中心に(若手研究者のための講演会)
- ガウス混合分布の正規化最尤符号の効率的計算法とモデル選択(IBIS2010(情報論的学習理論ワークショップ))
- 逐次的動的モデル選択の線形時間アルゴリズム(一般講演(符号化・モデル選択,機械学習とその応用)
- テキストマイニングによる自由記述アンケート分析
- 拡張型確率的コンプレキシティと情報論的学習理論
- 確率的規則を用いたタンパク質αヘリックス領域予測
- リンクの確率構造を用いたソーシャルネットワークにおける話題拡大検出 (情報論的学習理論と機械学習)
- 情報論的学習理論の現状と展望(情報論的学習理論とその応用)
- 招待講演 情報論的学習理論に基づくマイニング技術--外れ値検出とテキストマイニングを例に (小特集 使えるAI基礎技術)
- 線形結合モデルを用いたトピック分析
- ESCに基づく確率的決定リストを用いたテキスト分類
- ESCに基づく確率的決定リストを用いたテキスト分類
- 線形結合モデルを用いたドキュメント分類
- ガウス混合分布の再正規化最尤符号の効率的計算法とクラスタリング (情報論的学習理論と機械学習)
- データ・テキストマイニングの最新動向 : 外れ値検出と評判分析を例に(データ・テキストマイニング)
- リンクの確率構造を用いたソーシャルネットワークにおける話題拡大検出(ネットワーク,テキスト・Webマイニング,一般)
- 統計的モデル選択と機械学習
- 情報理論・統計手法と学習技術
- MDL基準から拡張型確率的コンプレキシティへ
- MDL原理
- データ圧縮と学習 (AIの手法と周辺の基礎理論)
- 確率的コンプレキシティと学習理論(統計モデル選択)
- ガウス混合分布の正規化最尤符号の効率的計算法とモデル選択
- データマイニングの情報セキュリティへの応用(情報セキュリティとAI)
- 招待講演:Webマイニングと情報論的学習理論 (2002年情報学シンポジウム 講演論文集--情報社会のセマンティクスXMLとSemantic Web,電子政府への展望,ロボットとの共生) -- (セッション1 Semantic WebとWeb Mining)
- データ・テキストマイニング
- 文書の確率的モデリングとテキストマイニング (AIシンポジウム(第15回)WWW情報検索と情報統合)
- ガウス混合分布の再正規化最尤符号の効率的計算法とクラスタリング(機械学習とその応用)
- ネットワーク構造変化検出と広告効果測定への応用(機械学習とその応用)
- ソーシャルネットワークにおける長期間流行する話題の早期検出 (情報論的学習理論と機械学習)
- Latent Dirichlet Allocationを用いた潜在的構造変化検知 (情報論的学習理論と機械学習)
- 再正規化最尤符号を用いたクラスタリング構造変化の検出(ポスターセッション,第14回情報論的学習理論ワークショップ)
- 逐次的なネットワーク構造変化検出手法と広告効果測定への応用(ポスターセッション,第14回情報論的学習理論ワークショップ)
- Resetting分布を用いた動的モデル選択(ポスターセッション,第14回情報論的学習理論ワークショップ)
- 時系列データからの潜在的構造変化検出(招待講演,時系列パターン認識)
- 時系列データからの潜在的構造変化検出(招待講演,時系列パターン認識)
- 時系列データからの潜在的構造変化検出
- ソーシャルネットワークにおける長期間流行する話題の早期検出(時系列解析,統計推理,データベース,一般)
- Latent Dirichlet Allocationを用いた潜在的構造変化検知(ベイズ統計モデル,統計推理,データベース,一般)
- 逐次的なネットワーク構造変化検出手法と広告効果測定への応用
- 木構造を用いたグラフ分割の構造変化検知
- 多次元パラメータを有する区間定常無記憶情報源に対してのMDL原理に基づく変化検出アルゴリズム(機械学習一般とその応用)
- 再正規化最尤符号を用いたクラスタリング構造変化の検出
- Resetting 分布を用いた動的モデル選択
- 木構造を用いたグラフ分割の構造変化検知(コンピュータビジョンとパターン認識のための機械学習及び企業ニーズセッション)
- 木構造を用いたグラフ分割の構造変化検知(一般セッション,コンピュータビジョンとパターン認識のための機械学習及び企業ニーズセッション)
- 3-5 潜在的ダイナミクスの学習理論(3.潜在的ダイナミクス-深い変化を読み解く-,データを読み解く技術-ビッグデータ,e-サイエンス,潜在的ダイナミクス-)
- Latent Dirichlet Allocation を用いた潜在的構造変化検知