Microscopic Derivation of Collective Hamiltonian by Means of the Adiabatic Self-Consistent Collective Coordinate Method : Shape Mixing in Low-Lying States of ^<68>Se and ^<72>Kr(Nuclear Physics)
スポンサーリンク
概要
- 論文の詳細を見る
The microscopic dynamics of oblate-prolate shape coexistence/mixing phenomena in ^<68>Se and ^<72>Kr are studied by means of the adiabatic self-consistent collective coordinate (ASCC) method in conjunction with the pairing-plus-quadrupole (P+Q) Hamiltonian, including the quadrupole pairing interaction. A quantum collective Hamiltonian is constructed, and excitation spectra, spectroscopic quadrupole moments and quadrupole transition properties are evaluated. The effect of the time-odd pair field on the collective mass (inertia function) of the large-amplitude vibration and the rotational moments of inertia about three principal axes is evaluated. It is found that the basic properties of the shape coexistence/mixing are qualitatively reproduced. The results of the calculation indicate that the oblate-prolate shape mixing decreases as the angular momentum increases.
- 理論物理学刊行会の論文
- 2008-01-25
著者
-
NAKATSUKASA Takashi
Theoretical Nuclear Physics Laboratory, RIKEN Nishina Center
-
MATSUO Masayuki
Department of Physics, Niigata University
-
松柳 研一
Theoretical Nuclear Physics Laboratory Riken Nishina Center:yukawa Institute For Theoretical Physics
-
松柳 研一
京都大学大学院理学研究科
-
Hlnohara Nobuo
Theoretical Nuclear Physics Laboratory Riken Nishina Center
-
Matsuo M
Department Of Physics Niigata University
-
Matsuo Masayuki
Department Of Physics Faculty Of Science Niigata University
-
HINOHARA Nobuo
Department of Physics, Graduate School of Science, Kyoto University
-
MATSUYANAGI Kenichi
Department of Physics, Graduate School of Science, Kyoto University
-
Matsuyanagi Kenichi
Theoretical Nuclear Physics Laboratory Riken Nishina Center
-
Matsuyanagi Kenichi
Department Of Physics Graduate School Of Science Kyoto University
-
Nakatsukasa Takashi
Theoretical Nuclear Physics Laboratory Riken Nishina Center
-
Nakatsukasa T
Physics Department Tohoku University
-
Matsuo Masayuki
Department Of Materials Science Nagoya Institute Of Technology
-
HINOHARA Nobuo
Department of Physics and Astronomy, University of North Carolina:Theoretical Nuclear Physics Laboratory, RIKEN Nishina Center
関連論文
- A Model Analysis of Triaxial Deformation Dynamics in Oblate-Prolate Shape Coexistence Phenomena(Nuclear Physics)
- Di-Neutron Correlation in Soft Octupole Excitations of Neutron-Rich Ni Isotopes beyond N=50(Nuclear Physics)
- Comparison of urethral diameters for calculating the urethral dose after permanent prostate brachytherapy
- CT-based postimplant dosimetry of prostate brachytherapy : comparison of 1-mm and 5-mm section CT
- Fusion Reaction of Halo Nuclei : Proton Halo versus Neutron Halo
- Absorbing Boundary Condition Approach for Breakup Reactions of Halo Nuclei
- 有限量子系のシェル構造と古典周期軌道
- 29a-F-10 殻構造の形成に対する共鳴周期軌道の役割
- 29p-X-10 巨大変形核の殻構造と古典周期軌道
- 29p-ZN-9 超変形核のスーパーシェル構造と古典軌道の分岐現象
- 2p-D-9 反転非対称な超変形核におけるスーパーシェル構造の半古典的解析
- Microscopic Derivation of Collective Hamiltonian by Means of the Adiabatic Self-Consistent Collective Coordinate Method : Shape Mixing in Low-Lying States of ^Se and ^Kr(Nuclear Physics)
- Microscopic Description of Shape Coexistence Phenomena around ^Se and ^Kr(International Workshop on Nuclear Structure-New Pictures in the Extended Isospin Space(NS07)-)
- Gauge-Invariant Formulation of the Adiabatic Self-Consistent Collective Coordinate Method(Nuclear Physics)
- Effects of Time-Odd Components in Mean Field on Large Amplitude Collective Dynamics (Nuclear Physics)
- Collective Paths Connecting the Oblate and Prolate Shapes in ^Se and ^Kr Suggested by the Adiabatic Self-Consistent Collective Coordinate Method(Nuclear Physics)
- Collective Path Connecting the Oblate and Prolate Local Minima in ^Se
- Application of the Adiabatic Self-Consistent Collective Coordinate Method to a Solvable Model of Prolate-Oblate Shape Coexistence(Nuclear Physics)
- Diabatic Mean-Field Description of Rotational Bands in Terms of the Selfconsistent Collective Coordinate Method
- Adiabatic Selfconsistent Collective Coordinate Method for Large Amplitude Collective Motion in Nuclei with Pairing Correlations
- Semiclassical Origin of Superdeformed Shell Structure in the Spheroidal Cavity Model : Nuclear Physics
- Periodic-Orbit Bifurcation and Shell Structure in Reflection-Asymmetric Deformed Cavity : Nuclear Physics
- Soft Octupole Vibrations with K=0 and K≠0 Built on Superdeformed Rotational Bands and Static Pairing Correlations : Nuclear Physics
- Octupole Vibrations with K=1 and 2 in Superconducting, Superdeformed Nuclei : Nuclear Physics
- Diabatic Approach to Shape Coexistence Phenomena in Semi-Magic Nuclei. I : Illustration of Basic Ideas : Nuclear Physics
- 22aSD-2 不安定核の集団現象に対する微視的アプローチ(22aSD 実験核物理領域,理論核物理領域合同招待講演,実験核物理領域)
- 原子核における変形共存現象と大振幅集団運動(有限量子多体系の励起構造と相関効果-原子核・量子ドット・ボース凝縮・クラスターを中心として-,研究会報告)
- 原子核における変形共存現象と大振幅集団運動(「有限量子多体系の励起構造と相関効果」-原子核・量子ドット・ボース凝縮・クラスターを中心として-,研究会報告)
- Rotational Frequency Dependence of Octupole Vibrations on Superdeformed States in ^Ca(Nuclear Physics)
- Triaxiality Dependence of Octupole Excitations on Superdeformed States in ^Ti(Nuclear Physics)
- Soft K^π=0^+ modes unique to deformed neutron-rich nuclei(International Workshop on Nuclear Structure-New Pictures in the Extended Isospin Space(NS07)-)
- Rotating RPA Calculation for Collective Vibrational Modes built on Superdeformed Bands in the ^Ca Region(International Workshop on Nuclear Structure-New Pictures in the Extended Isospin Space(NS07)-)
- Comparative Study of Octupole Excitations on Superdeformed States in ^S, ^S, ^Ca and ^S(Nuclear Physics)
- Cranked Skyrme-Hartree-Fock Calculations for Superdeformed and Hyperdeformed Bands in N = Z Nuclei, ^32S, ^36Ar, ^40Ca, and in Neutron Rich Nuclei, ^14Be, ^26Ne, ^46S
- Cranked Skyrme-Hartree-Fock Calculations for Superdeformed and Hyperdeformed Bands in N=Z Nuclei, ^S, ^Ar, ^Ca, and in Neutron Rich Nuclei, ^Be, ^Ne, ^S
- Symmetry Breaking and Bifurcations in the Periodic Orbit Theory.II : Spheroidal Cavity
- Symmetry Breaking and Bifurcations in the Periodic Orbit Theory. II : Spheroidal Cavity
- 3D Real-Space Calculation of the Continuum Response
- Collectivity of pygmy resonance in spherical and deformed Ni and Fe isotopes(International Workshop on Nuclear Structure-New Pictures in the Extended Isospin Space(NS07)-)
- Analysis of Collective- Noncollective Couplings in a Degenerate Many j-Shell Model : Nuclear Physics
- Residual Interactions between Aligned Quasiparticles and Pairing Deformation Changes in ^Yb and ^Er
- Dynamical Interplay of Pairing and Quadrupole Modes in Transitional Nuclei.III
- Dynamical Interplay of Pairing and Quadrupole Modes in Transitional Nuclei. II
- Dynamical Interplay of Pairing and Quadrupole Modes in Transitional Nuclei. I
- Property of Many-Phonon Norm Matrix
- Chapter 7. Coupling between Collective and Intrinsic Modes of Excitation : Part IV. A Next Subject
- Chapter 5. Microscopic Structure of Breaking and Persistency of "Phonon-plus-Odd-Quasi-Particle Picture" : Part III. Analysis of Low-Lying States in Spherical Odd-Mass Nuclei
- Chapter 4. Persistency of AC State-Like Structure in Collective Excitations : Odd-Mass Mo, Ru, I, Cs and La Isotopes : Part III. Analysis of Low-Lying States in Spherical Odd-Mass Nuclei
- Chapter 3. Structure of the Anomalous Coupling States with Spin I=(j-1) : Part III. Analysis of Low-Lying States in Spherical Odd-Mass Nuclei
- Chapter 2. Theory of Intrinsic Modes of Excitation in Odd-Mass Nuclei : Part II. General Formulation of Theory
- Chapter 1. Intrinsic and Collective Degrees of Freedom in Quasi-Spin Space : Part II. General Formulation of Theory
- Part I. Introduction
- Microscopic Structure of a New Type of Collective Excitation in Odd-Mass Mo, Ru, I, Cs and La Isotopes
- Theory of Collective Excitations in Spherical Odd-Mass Nuclei. IV : Formulation in the General Many-j-Shell Model
- Theory of Collective Excitations in Spherical Odd-Mass Nuclei. II : Structure of the Anomalous Coupling States with Spin I = (j-1)
- Theory of Collective Excitations in Spherical Odd-Mass Nuclei. I : Basic Ideas and Concept of Dressed Three-Quasi-Particle Modes
- Deformation around Neutron-Rich Cr Isotopes in Axially Symmetric Skyrme-Hatree-Fock-Bogoliubov Method(Nuclear Physics)
- Dissociation of Branched-Chain α-Keto Acid Dehydrogenase Kinase (BDK) from Branched-Chain α-Keto Acid Dehydrogenase Complex (BCKDC) by BDK Inhibitors
- Effects of Octupole Vibrations on Quasiparticle Modes of Excitation in Superdeformed ^Hg : Nuclear Physics
- Octupole Vibrations in the Harmonic-Oscillator-Potential Model with Axis Ratio Two to One : Nuclear Physics
- Microscopic Description of Anharmonic Gamma-Vibrations by Means of the Selfconsistent-Collective-Coordinate Method. III
- Treatment of Nucleon-Number Conservation in the Selfconsistent Collective-Coordinate Method : Coupling between Large-Amplitude Collective Motion and Pairing Rotation : Nuclear Physics
- 28aSL-8 ^Seの変形共存と高スピン状態
- 25pTC-3 Exotic Shapes of Proton-rich N=Z nuclei in the A=60-80 region suggested by symmetry unrestricted Skyrme HFB Calculations
- 31aSC-9 Skyrme HFB法による、A≈60-80、Z=N領域での非軸対称変形の研究
- Spatial structure of neutron Cooper pairs in uniform matters and medium-mass neutron-rich nuclei(Fermion-pair condensation at low density,YITP Workshop on New Developments in Nuclear Self-Consistent Mean-Field Theories (MF05))
- Symmetry Breaking and Bifurcations in the Periodic Orbit Theory. I : Elliptic Billiard
- Octupole Vibrations Built on Superdeformed Rotational Bands : Progress Letters
- Quasiparticle-Vibration Couplings in Rotating Triaxial Odd-A Nuclei : Nuclear Physics
- Signature Dependence of M1 and E2 Transitions in Rotating Triaxial Odd-A Nuclei
- Semiclassical Analysis of the Supershell Effect in Reflection-Asymmetric Superdeformed Oscillator : Nuclear Physics
- Octupole Instability of the Closed-Shell Configurations in the Superdeformed Oscillator Potential : Nuclear Physics
- Microscopic Description of Anharmonic Gamma-Vibrations by Means of the Selfconsistent-Collective-Coordinate Method. II : Nuclear Physics
- Applicability of the Canonical Quantization Procedure for the Collective Hamiltonian Derived by the SelfConsistent-Collective-Coordinate Method : Nuclear Physics
- Monopole and Quadrupole Giant Resonances in Rotating Triaxially Deformed Nuclei. II : A Microscopic Description of the Isoscalar and Isovector Modes : Nuclear Physics
- Triaxiality Dependence of Octupole Excitations on Superdeformed States in ^Ti
- Microscopic Analysis of Shape Coexistence/Mixing and Shape Phase Transition in Neutron-Rich Nuclei around ^Mg(YKIS2011 papers, Frontier Issues in Physics of Exotic Nuclei)
- Monopole and Quadrupole Giant Resonances in Rotating Triaxially Deformmed Nuclei : Nuclear Physics
- Adiabatic Selfconsistent Collective Coordinate Method for Large Amplitude Collective Motion in Nuclei with Pairing Correlations
- Effects of Octupole Vibrations on Quasiparticle Modes of Excitation in Superdeformed 193Hg
- Octupole Vibrations in the Harmonic-Oscillator-Potential Model with Axis Ratio Two to One
- Soft Octupole Vibrations with K=0 and K≠0 Built on Superdeformed Rotational Bands and Static Pairing Correlations
- Octupole Vibrations with K=1 and 2 in Superconducting,Superdeformed Nuclei
- Diabatic Approach to Shape Coexistence Phenomena in Semi-Magic Nuclei-1-Illustration of Basic Ideas
- Octupole Vibrations Built on Superdeformed Rotational Bands
- Quasiparticle-Vibration Couplings in Rotating Triaxial Odd-A Nuclei
- Microscopic Description of Anharmonic Gamma-Vibrations by Means of the Selfconsistent-collective-coordinate Method-3-
- A Model Analysis of Triaxial Deformation Dynamics in Oblate-Prolate Shape Coexistence Phenomena
- Rotational Frequency Dependence of Octupole Vibrations on Superdeformed States in ^Ca
- Microscopic Derivation of Collective Hamiltonian by Means of the Adiabatic Self-Consistent Collective Coordinate Method : Shape Mixing in Low-Lying States of ^Se and ^Kr
- Gauge-Invariant Formulation of the Adiabatic Self-Consistent Collective Coordinate Method
- Effects of Time-Odd Components in Mean Field on Large Amplitude Collective Dynamics
- Collective Path Connecting the Oblate and Prolate Local Minima in ^Se
- Application of the Adiabatic Self-Consistent Collective Coordinate Method to a Solvable Model of Prolate-Oblate Shape Coexistence
- Diabatic Mean-Field Description of Rotational Bands in Terms of the Selfconsistent Collective Coordinate Method
- Periodic-Orbit Bifurcation and Shell Structure in Reflection-Asymmetric Deformed Cavity : Nuclear Physics
- Semiclassical Origin of Superdeformed Shell Structure in the Spheroidal Cavity Model : Nuclear Physics
- Collective Paths Connecting the Oblate and Prolate Shapes in ^Se and ^Kr Suggested by the Adiabatic Self-Consistent Collective Coordinate Method(Nuclear Physics)
- Comparative Study of Octupole Excitations on Superdeformed States in ^S, ^S, ^Ca and ^S(Nuclear Physics)
- Microscopic Analysis of Shape Coexistence/Mixing and Shape Phase Transition in Neutron-Rich Nuclei around ^Mg