Soft Octupole Vibrations with K=0 and K≠0 Built on Superdeformed Rotational Bands and Static Pairing Correlations : Nuclear Physics
スポンサーリンク
概要
- 論文の詳細を見る
Properties of low-1ying octupole vibrations (with K=0, 1, 2 and 3) built on superdeformed rotational bands are investigated by means of the RPA in a uniformly rotating frame. Large configuration space composed of 9 major shells is used. Numerical examples are presented for the superdeformed band in ^<192>Hg as a typical case where appreciable amount of static pairing correlations remains at finite values of the rotational frequency. We obtain strongly collective low-frequency octupole vibrations with K=0, 1 and 2. It is shown that the properties of the K=1 octupole vibrations are especially sensitive to the static pairing correlations. The Coriolis-mixings among these soft octupole vibrations are shown to become important when the rotational frequency ω_<rot>≳0.2 MeV/&plank;.
- 理論物理学刊行会の論文
- 1991-07-25
著者
-
松柳 研一
Theoretical Nuclear Physics Laboratory Riken Nishina Center:yukawa Institute For Theoretical Physics
-
MATSUYANAGI Kenichi
Department of Physics, Graduate School of Science, Kyoto University
-
SHIMIZU Yoshifumi
Department of Physics, Kyushu University
-
MIZUTORI Shoujirou
Department of Physics, Kyoto University
-
Matsuyanagi Kenichi
Theoretical Nuclear Physics Laboratory Riken Nishina Center
-
Matsuyanagi Kenichi
Department Of Physics Graduate School Of Science Kyoto University
-
MIZUTORI Shoujirou
Institute for Nuclear Study, University of Tokyo
-
Shimizu Y
Department Of Physics Kyushu University
-
Shimizu Yoshifumi
Department Of Physics Graduate School Of Sciences Kyushu University
-
Mizutori Shoujirou
Department Of Human Science Kansai Women's College
-
MATSUYANAGI Kenichi
Department of Physics, Kyoto University
関連論文
- A Model Analysis of Triaxial Deformation Dynamics in Oblate-Prolate Shape Coexistence Phenomena(Nuclear Physics)
- 有限量子系のシェル構造と古典周期軌道
- 29a-F-10 殻構造の形成に対する共鳴周期軌道の役割
- 29p-X-10 巨大変形核の殻構造と古典周期軌道
- 29p-ZN-9 超変形核のスーパーシェル構造と古典軌道の分岐現象
- 2p-D-9 反転非対称な超変形核におけるスーパーシェル構造の半古典的解析
- Microscopic Derivation of Collective Hamiltonian by Means of the Adiabatic Self-Consistent Collective Coordinate Method : Shape Mixing in Low-Lying States of ^Se and ^Kr(Nuclear Physics)
- Microscopic Description of Shape Coexistence Phenomena around ^Se and ^Kr(International Workshop on Nuclear Structure-New Pictures in the Extended Isospin Space(NS07)-)
- Gauge-Invariant Formulation of the Adiabatic Self-Consistent Collective Coordinate Method(Nuclear Physics)
- Effects of Time-Odd Components in Mean Field on Large Amplitude Collective Dynamics (Nuclear Physics)
- Collective Paths Connecting the Oblate and Prolate Shapes in ^Se and ^Kr Suggested by the Adiabatic Self-Consistent Collective Coordinate Method(Nuclear Physics)
- Collective Path Connecting the Oblate and Prolate Local Minima in ^Se
- Application of the Adiabatic Self-Consistent Collective Coordinate Method to a Solvable Model of Prolate-Oblate Shape Coexistence(Nuclear Physics)
- Diabatic Mean-Field Description of Rotational Bands in Terms of the Selfconsistent Collective Coordinate Method
- Adiabatic Selfconsistent Collective Coordinate Method for Large Amplitude Collective Motion in Nuclei with Pairing Correlations
- Semiclassical Origin of Superdeformed Shell Structure in the Spheroidal Cavity Model : Nuclear Physics
- Periodic-Orbit Bifurcation and Shell Structure in Reflection-Asymmetric Deformed Cavity : Nuclear Physics
- Soft Octupole Vibrations with K=0 and K≠0 Built on Superdeformed Rotational Bands and Static Pairing Correlations : Nuclear Physics
- Octupole Vibrations with K=1 and 2 in Superconducting, Superdeformed Nuclei : Nuclear Physics
- Diabatic Approach to Shape Coexistence Phenomena in Semi-Magic Nuclei. I : Illustration of Basic Ideas : Nuclear Physics
- 22aSD-2 不安定核の集団現象に対する微視的アプローチ(22aSD 実験核物理領域,理論核物理領域合同招待講演,実験核物理領域)
- 原子核における変形共存現象と大振幅集団運動(有限量子多体系の励起構造と相関効果-原子核・量子ドット・ボース凝縮・クラスターを中心として-,研究会報告)
- 原子核における変形共存現象と大振幅集団運動(「有限量子多体系の励起構造と相関効果」-原子核・量子ドット・ボース凝縮・クラスターを中心として-,研究会報告)
- Rotational Frequency Dependence of Octupole Vibrations on Superdeformed States in ^Ca(Nuclear Physics)
- Triaxiality Dependence of Octupole Excitations on Superdeformed States in ^Ti(Nuclear Physics)
- Soft K^π=0^+ modes unique to deformed neutron-rich nuclei(International Workshop on Nuclear Structure-New Pictures in the Extended Isospin Space(NS07)-)
- Rotating RPA Calculation for Collective Vibrational Modes built on Superdeformed Bands in the ^Ca Region(International Workshop on Nuclear Structure-New Pictures in the Extended Isospin Space(NS07)-)
- Comparative Study of Octupole Excitations on Superdeformed States in ^S, ^S, ^Ca and ^S(Nuclear Physics)
- Cranked Skyrme-Hartree-Fock Calculations for Superdeformed and Hyperdeformed Bands in N = Z Nuclei, ^32S, ^36Ar, ^40Ca, and in Neutron Rich Nuclei, ^14Be, ^26Ne, ^46S
- Cranked Skyrme-Hartree-Fock Calculations for Superdeformed and Hyperdeformed Bands in N=Z Nuclei, ^S, ^Ar, ^Ca, and in Neutron Rich Nuclei, ^Be, ^Ne, ^S
- Symmetry Breaking and Bifurcations in the Periodic Orbit Theory.II : Spheroidal Cavity
- Symmetry Breaking and Bifurcations in the Periodic Orbit Theory. II : Spheroidal Cavity
- Analysis of Collective- Noncollective Couplings in a Degenerate Many j-Shell Model : Nuclear Physics
- Residual Interactions between Aligned Quasiparticles and Pairing Deformation Changes in ^Yb and ^Er
- Dynamical Interplay of Pairing and Quadrupole Modes in Transitional Nuclei.III
- Dynamical Interplay of Pairing and Quadrupole Modes in Transitional Nuclei. II
- Dynamical Interplay of Pairing and Quadrupole Modes in Transitional Nuclei. I
- Property of Many-Phonon Norm Matrix
- Chapter 7. Coupling between Collective and Intrinsic Modes of Excitation : Part IV. A Next Subject
- Chapter 5. Microscopic Structure of Breaking and Persistency of "Phonon-plus-Odd-Quasi-Particle Picture" : Part III. Analysis of Low-Lying States in Spherical Odd-Mass Nuclei
- Chapter 4. Persistency of AC State-Like Structure in Collective Excitations : Odd-Mass Mo, Ru, I, Cs and La Isotopes : Part III. Analysis of Low-Lying States in Spherical Odd-Mass Nuclei
- Chapter 3. Structure of the Anomalous Coupling States with Spin I=(j-1) : Part III. Analysis of Low-Lying States in Spherical Odd-Mass Nuclei
- Chapter 2. Theory of Intrinsic Modes of Excitation in Odd-Mass Nuclei : Part II. General Formulation of Theory
- Chapter 1. Intrinsic and Collective Degrees of Freedom in Quasi-Spin Space : Part II. General Formulation of Theory
- Part I. Introduction
- Microscopic Structure of a New Type of Collective Excitation in Odd-Mass Mo, Ru, I, Cs and La Isotopes
- Theory of Collective Excitations in Spherical Odd-Mass Nuclei. IV : Formulation in the General Many-j-Shell Model
- Theory of Collective Excitations in Spherical Odd-Mass Nuclei. II : Structure of the Anomalous Coupling States with Spin I = (j-1)
- Theory of Collective Excitations in Spherical Odd-Mass Nuclei. I : Basic Ideas and Concept of Dressed Three-Quasi-Particle Modes
- Tunneling in High-K Isomeric Decays
- Effects of Octupole Vibrations on Quasiparticle Modes of Excitation in Superdeformed ^Hg : Nuclear Physics
- Octupole Vibrations in the Harmonic-Oscillator-Potential Model with Axis Ratio Two to One : Nuclear Physics
- Origin of Prolate Dominance of Nuclear Deformation
- Origin of Prolate Dominance of Nuclear Deformation
- Interplay of Gamma-Vibrations and Aligned-Quasiparticles at High-Spin Yrast Region : Nuclear Physics
- An Extension of the Rotating Shell Model and Its Application to ^Er
- Microscopic Description of Anharmonic Gamma-Vibrations by Means of the Selfconsistent-Collective-Coordinate Method. III
- Symmetry Breaking and Bifurcations in the Periodic Orbit Theory. I : Elliptic Billiard
- Octupole Vibrations Built on Superdeformed Rotational Bands : Progress Letters
- Quasiparticle-Vibration Couplings in Rotating Triaxial Odd-A Nuclei : Nuclear Physics
- Signature Dependence of M1 and E2 Transitions in Rotating Triaxial Odd-A Nuclei
- Semiclassical Analysis of the Supershell Effect in Reflection-Asymmetric Superdeformed Oscillator : Nuclear Physics
- Two-Octupole-Phonon States in ^Gd
- Non-Unitary Realization of the Selfconsistent Collective-Coordinate Method : Nuclear Physics
- Octupole Instability of the Closed-Shell Configurations in the Superdeformed Oscillator Potential : Nuclear Physics
- Microscopic Description of Anharmonic Gamma-Vibrations by Means of the Selfconsistent-Collective-Coordinate Method. I : Nuclear Physics
- Microscopic Description of Anharmonic Gamma-Vibrations by Means of the Selfconsistent-Collective-Coordinate Method. II : Nuclear Physics
- Applicability of the Canonical Quantization Procedure for the Collective Hamiltonian Derived by the SelfConsistent-Collective-Coordinate Method : Nuclear Physics
- Test of Validity of the Hermitian Treatment of the Dyson Boson Mapping
- A Comment on the New Formulation of a Many-Level Shell Model
- Chapter 6. Comparison between Results with the P+QQ Force and with More Complex Residual Force : Part III. Analysis of Low-Lying States in Spherical Odd-Mass Nuclei
- Magnetic Properties of Precession Modes Built on High-K Multi-Quasiparticle States in ^W
- Nuclear Wobbling Motion from Microscopic Viewpoint (原子核集団運動の非線形動力学(研究会報告))
- Monopole and Quadrupole Giant Resonances in Rotating Triaxially Deformed Nuclei. II : A Microscopic Description of the Isoscalar and Isovector Modes : Nuclear Physics
- Triaxiality Dependence of Octupole Excitations on Superdeformed States in ^Ti
- Deformation Effect on Total Reaction Cross Sections for Neutron-Rich Ne-Isotopes(YKIS2011 papers, Frontier Issues in Physics of Exotic Nuclei)
- Microscopic Analysis of Shape Coexistence/Mixing and Shape Phase Transition in Neutron-Rich Nuclei around ^Mg(YKIS2011 papers, Frontier Issues in Physics of Exotic Nuclei)
- Monopole and Quadrupole Giant Resonances in Rotating Triaxially Deformmed Nuclei : Nuclear Physics
- Adiabatic Selfconsistent Collective Coordinate Method for Large Amplitude Collective Motion in Nuclei with Pairing Correlations
- Effects of Octupole Vibrations on Quasiparticle Modes of Excitation in Superdeformed 193Hg
- Octupole Vibrations in the Harmonic-Oscillator-Potential Model with Axis Ratio Two to One
- Soft Octupole Vibrations with K=0 and K≠0 Built on Superdeformed Rotational Bands and Static Pairing Correlations
- Octupole Vibrations with K=1 and 2 in Superconducting,Superdeformed Nuclei
- Diabatic Approach to Shape Coexistence Phenomena in Semi-Magic Nuclei-1-Illustration of Basic Ideas
- Octupole Vibrations Built on Superdeformed Rotational Bands
- Quasiparticle-Vibration Couplings in Rotating Triaxial Odd-A Nuclei
- Microscopic Description of Anharmonic Gamma-Vibrations by Means of the Selfconsistent-collective-coordinate Method-3-
- A Model Analysis of Triaxial Deformation Dynamics in Oblate-Prolate Shape Coexistence Phenomena
- Rotational Frequency Dependence of Octupole Vibrations on Superdeformed States in ^Ca
- Microscopic Derivation of Collective Hamiltonian by Means of the Adiabatic Self-Consistent Collective Coordinate Method : Shape Mixing in Low-Lying States of ^Se and ^Kr
- Gauge-Invariant Formulation of the Adiabatic Self-Consistent Collective Coordinate Method
- Effects of Time-Odd Components in Mean Field on Large Amplitude Collective Dynamics
- Collective Path Connecting the Oblate and Prolate Local Minima in ^Se
- Application of the Adiabatic Self-Consistent Collective Coordinate Method to a Solvable Model of Prolate-Oblate Shape Coexistence
- Diabatic Mean-Field Description of Rotational Bands in Terms of the Selfconsistent Collective Coordinate Method
- Periodic-Orbit Bifurcation and Shell Structure in Reflection-Asymmetric Deformed Cavity : Nuclear Physics
- Semiclassical Origin of Superdeformed Shell Structure in the Spheroidal Cavity Model : Nuclear Physics
- Collective Paths Connecting the Oblate and Prolate Shapes in ^Se and ^Kr Suggested by the Adiabatic Self-Consistent Collective Coordinate Method(Nuclear Physics)
- Comparative Study of Octupole Excitations on Superdeformed States in ^S, ^S, ^Ca and ^S(Nuclear Physics)
- Microscopic Analysis of Shape Coexistence/Mixing and Shape Phase Transition in Neutron-Rich Nuclei around ^Mg