3D Real-Space Calculation of the Continuum Response
スポンサーリンク
概要
- 論文の詳細を見る
We present that a linear response theory in the continuum can be easily formulated with Absorbing Boundary Condition (ABC). The theory is capable of describing continuum spectra and dynamical correlations. Application of the ABC does not require the spherical symmetry and the method is suitable for mesh representation in the real coordinate space. Isovector giant dipole resonances in beryllium isotopes are studied with the time-dependent Hartree-Fock with the Skyrme force in a three-dimensional mesh space with the ABC.
- 理論物理学刊行会の論文
- 2002-12-26
著者
-
NAKATSUKASA Takashi
Theoretical Nuclear Physics Laboratory, RIKEN Nishina Center
-
YABANA Kazuhiro
Department of Physics, Kyoto University
-
Yabana K
Univ. Tsukuba Tsukuba Jpn
-
Yabana Kazuhiro
Research Institute For Fundamental Physics Kyoto University
-
Yabana Kazuhiro
Institute Of Physics University Of Tsukuba
-
Yabana Kazuhiro
Institute Of Physics & Center For Computational Sciences University Of Tsukuba
-
NAKATSUKASA Takashi
Physics Department, Tohoku University
-
Nakatsukasa Takashi
Physics Department Tohoku University
-
NAKATSUKASA Takashi
Institute of Physics and Center for Computational Science, University of Tsukuba
関連論文
- A Model Analysis of Triaxial Deformation Dynamics in Oblate-Prolate Shape Coexistence Phenomena(Nuclear Physics)
- Semi-Classical Quantization for Multi-Dimensional Coupled-Channel Equation : General and Mathematical Physics
- 実空間におけるRPA方程式の解法(有限量子多体系の励起構造と相関効果-原子核・量子ドット・ボース凝縮・クラスターを中心として-,研究会報告)
- Skyrme GCM calculation with parity and angular momentum projection for Mg isotopes(Poster presentation,YITP Workshop on New Developments in Nuclear Self-Consistent Mean-Field Theories (MF05))
- Linear response calculations in the time-dependent Skyrme density functional(International Workshop on Nuclear Structure-New Pictures in the Extended Isospin Space(NS07)-)
- Microscopic Theories for the Reactions of Halo Nuclei
- 実空間における RPA 方程式の解法(「有限量子多体系の励起構造と相関効果」-原子核・量子ドット・ボース凝縮・クラスターを中心として-,研究会報告)
- Absorbing Kernels to Study Resonances in the Generator Coordinate Method(Nuclear Physics)
- Microscopic Derivation of the Nucleus-Nucleus Potential by the Use of the Density-Dependent Effective Interaction
- Cranked Cluster Wave Function for Molecular States : Nuclear Physics
- WKB Treatment of Boson Hamiltonian of Inter-Nucleus Interaction
- Solving the RPA Eigenvalue Equation in Real-Space(Nuclear Physics)
- Solving the RPA Eigenvalue Equation in Real-Space
- Fusion Reaction of Halo Nuclei : Proton Halo versus Neutron Halo
- Absorbing Boundary Condition Approach for Breakup Reactions of Halo Nuclei
- Low Energy Reactions of Halo Nuclei in a Three-Body Model : Nuclear Physics
- Alpha Clustering of Light Nuclei in the Parity Projected Mean Field Method : Nuclear Physics
- Deformations of Be Isotopes Studied with Skyrme Hartree-Fock Method : Nuclear Physics
- A Semi-Classical Treatment of the Coupled Channel Equation with Non-Local Interaction. IV : Higher Order Corrections to the Equivalent Local Potentials : Progress Letters
- Microscopic Study of the α-^O Interaction on the Basis of the Realistic Effective Interaction
- Microscopic Study of the Nucleus-Nucleus Interaction on the Basis of the Realistic Effective Interaction. II : Physical Consideration on the Effective Interaction and Comparison with Experiments in the α-α System : Nuclear Physics
- Microscopic Study of the Nucleus-Nucleus Interaction on the Basis of the Realistic Effective Interaction. I : Formulation : Nuclear Physics
- WKB Method in Boson Representation : Progress Letters
- A Semi-Classical Treatment of the Coupled Channel Equation with Non-Local Interaction. II : Equivalent Local Potentials to Be Used in the Coupled Channel Treatment : Nuclear Physics
- A Semi-Classical Treatment of the Coupled Channel Equation with Non-Local Interaction. III : Perey Effect and Flux Conservation : Nuclear Physics
- Microscopic Derivation of Collective Hamiltonian by Means of the Adiabatic Self-Consistent Collective Coordinate Method : Shape Mixing in Low-Lying States of ^Se and ^Kr(Nuclear Physics)
- Microscopic Description of Shape Coexistence Phenomena around ^Se and ^Kr(International Workshop on Nuclear Structure-New Pictures in the Extended Isospin Space(NS07)-)
- Gauge-Invariant Formulation of the Adiabatic Self-Consistent Collective Coordinate Method(Nuclear Physics)
- Effects of Time-Odd Components in Mean Field on Large Amplitude Collective Dynamics (Nuclear Physics)
- Collective Path Connecting the Oblate and Prolate Local Minima in ^Se
- Application of the Adiabatic Self-Consistent Collective Coordinate Method to a Solvable Model of Prolate-Oblate Shape Coexistence(Nuclear Physics)
- Adiabatic Selfconsistent Collective Coordinate Method for Large Amplitude Collective Motion in Nuclei with Pairing Correlations
- 3D Real-Space Calculation of the Continuum Response
- Microscopic Analysis of the Nucleus-Nucleus Optical Potential Based on the Feshbach Projection Operator Formalism. I : Formulation and Analysis of α^-^O System : Nuclear Physics
- On the Corner-of-Mass Free Density Matrix : Nuclear Physics
- Adiabatic Viewpoint for the WKB Treatment of Coupled Channel System : Appearance of the Berry Phase and Another Extra Phase Accompanying the Adiabatic Motion : Nuclear Physics
- 3D Real-Space Calculation of the Continuum Response
- Effect of the Nucleus-Nucleus Potential on the High Energy Photon Production in the Intermediate Energy Heavy Ion Collision : Nuclear Physics
- Microscopic Analysis of Inelastic Coupling Potential Based on the Coupled Channel Resonating Group Method. I : Formulation and Study of ^6Li-α System : Nuclear Physics
- Pauli-Forbiddenn Region in the Phase-Space of Coupled-Channel System in the Framework of the Time-Dependent Variational Theory
- A Semi-Classical Treatment of the Coupled Channel Equation with Non-Local Interaction. I : Nuclear Physics
- Effects of Octupole Vibrations on Quasiparticle Modes of Excitation in Superdeformed ^Hg : Nuclear Physics
- Octupole Vibrations in the Harmonic-Oscillator-Potential Model with Axis Ratio Two to One : Nuclear Physics
- Microscopic Derivation of Collective Hamiltonian by Means of the Adiabatic Self-Consistent Collective Coordinate Method : Shape Mixing in Low-Lying States of ^Se and ^Kr
- Application of the Adiabatic Self-Consistent Collective Coordinate Method to a Solvable Model of Prolate-Oblate Shape Coexistence
- Collective Paths Connecting the Oblate and Prolate Shapes in ^Se and ^Kr Suggested by the Adiabatic Self-Consistent Collective Coordinate Method(Nuclear Physics)