アスファルテンの分子量をどう測るか(<総説特集>アスファルテンの凝集)
スポンサーリンク
概要
- 論文の詳細を見る
Molecular weight (MW) is one of the most important properties of asphaltene, but there have not been infallible measurement methods yet. In order to establish proper MW measurement method, LDI-MS, GPC and GPC-MS were applied. By LDI-MS analysis, AS-MY showed bimodal spectrum at the peak tops of 500 and 1800amu. The use of a matrix to determine asphaltene MW was not useful as it enhanced the ionization of some of asphaltene fractions. There are optimum laser power for significant ionization of high-MW molecules and for minimum polymerization and fragmentation. By GPC and GPC-MS analyses, there was a significant gap between molecular weights calculated from retention time and measured by APPI-MS. Molecular weight measured by MS was similar to that from retention time about 900, but was significantly higher in the lower molecular weight range, with a linear correlation between them. Three new chemicals were selected for new calibration standards to convert molecular weight from retention time to that by MS. Three asphaltenes were fractionated into five fractions and a residue using a preparative GPC, followed by an average structural analysis to estimate the structural parameter distribution. For high-MW fractions having average MW higher than 1700 by GPC showed only 1700 by LDI-MS. It is thought that LDI-MS measured the MW for single molecules while GPC did the aggregates judging from the number of units estimated by an average structural analysis. The H/C atomic ratio increased and carbon aromaticity (fa) decreased as the molecular weight increased up to 1700 and was nearly constant above it, while H/C + fa was constant throughout the range of MW. The parameters on the numbers of total and aromatic rings were nearly constant. The estimated formula weight of a unit was between 400 and 1200. The results suggest that high molecular weight molecules consist of several units which form aggregates, and no further enlargement occur on a unit size.
- 2007-10-20
著者
関連論文
- アスファルテンの分子量をどう測るか(アスファルテンの凝集)
- 重質油と高い親和性を示す超臨界水の条件
- ナフサ中の極微量硫黄酸化物の吸着分離 : シリカゲルのトルエンおよびジメチルエーテルによる再活性化
- ナフサ/酢酸二相系中でのナフサの過酸化水素によるタングストリン酸触媒酸化脱硫
- アスファルテンの炭素芳香族性の元素分析およびプロトンNMRからの予測
- 44 溶剤の添加による重質油の凝集構造緩和(重質油(2),汚泥)
- 重質油からの燃料製造における課題 (特集 重質油からの燃料油製造)
- アスファルテンの凝集構造解析(黒もの分析の進歩)
- ナフサ中の極微量硫黄酸化物の吸着分離 : 吸着剤のスクリーニング
- 中東原油とカナダ産オイルサンドビチューメンからの合成原油との混合処理
- 文献に見る水を使った重質油処理の歴史(水を使った重質油処理)
- 1.6 石油類似資源(1. 石油,II エネルギー資源の利用技術の進展と研究動向,平成19年における重要なエネルギー関係事項)
- アスファルテン分子のモデルを描く : 平均分子構造解析法(アスファルテンの凝集)
- アスファルテンの凝集にまつわる話題(アスファルテンの凝集)
- 1.6 石油類似資源(1. 石油,II エネルギー資源の利用技術の進展と研究動向,平成18年における重要なエネルギー関係事項)
- ガスクロマトグラフィー/誘導結合プラズマ質量分析法による石油中硫黄の化学形態別分析
- 重質油部会の活動概要
- 超重質炭化水素資源の高度利用技術
- 1.6 石油類似資源(1. 石油,II エネルギー資源の利用技術の進展と研究動向,平成17年における重要なエネルギー関係事項)
- 分子レベルから見た重質油処理技術 : アスファルテン分子凝集構造と解離挙動(重質油-限りある石油資源の有効利用を目指して-)
- 1.6 石油類似資源(1.石油,II エネルギー資源の利用技術の進展と研究動向,平成16年における重要なエネルギー関係項目)
- 1.6.2 オイルシェールの研究と開発の動向(1.6 石油類似資源,1. 石油,II エネルギー資源の利用技術の進展と研究動向,平成15年における重要なエネルギー関係項目)
- 1.6.1 オイルサンドの研究と開発の動向(1.6 石油類似資源,1. 石油,II エネルギー資源の利用技術の進展と研究動向,平成15年における重要なエネルギー関係項目)
- 1.6.2 オイルシェール(1.6 石油類似資源,1. 石油,II エネルギー資源の利用技術の進展と研究動向,平成14年における重要なエネルギー関係事項)
- 1.6.1 オイルサンド(1.6 石油類似資源,1. 石油,II エネルギー資源の利用技術の進展と研究動向,平成14年における重要なエネルギー関係事項)
- オイルシェール
- オイルサンド
- 石油類似資源
- 重質油と高い親和性を示す超臨界水の条件
- 6.GPC、LD/MS、LC/MS分析で測定した重質炭化水素の平均分子量
- 1-20.アスファルテン-レジン相互作用による分子凝集緩和挙動の解析((5)前処理・重質油熱分解,Session 1 石炭・重質油等)
- 1-19.重質炭化水素のGPC/MSによる平均分子量((5)前処理・重質油熱分解,Session 1 石炭・重質油等)
- 1-18.石油アスファルテンの熱分解反応におけるコーク生成((5)前処理・重質油熱分解,Session 1 石炭・重質油等)
- 1-1.アスファルテンの構造パラメータ分布のGPCによる推定((1)重質油・石炭改質I,Session 1 石炭・重質油等)
- 1-6 減圧残油関連物質の有機溶媒中における溶液構造に関する研究(Session 1 石炭・重質油)
- 1-3.^C-NMRおよびDEPT法を用いた縮合芳香環系の構造解析(Session 1 石炭・重質油)
- ペトロリアム・サイエンスの進展 : 視点は留分から成分へ, 分子レベルの組成・反応解析技術
- 重質油の構造モデリング (特集 反応モデリング--石炭・重質油・バイオマス)
- 表面張力測定によるアスファルテンとマルテン成分の段階的会合挙動の観察
- 1-3.アスファルテン分子凝集構造における各種分子間相互作用の寄与の評価((1)重質油・石炭改質I,Session 1 石炭・重質油等)
- 重質油分解プロセスの分子反応モデリング(Session 1 石炭・重質油等)
- アスファルテンの凝集の大きさを見る(アスファルテンの凝集)
- アスファルテンの分子・凝集構造の解析に基づいた重質油の反応性制御
- 7-3 オイルサンド残油の水素化処理におけるコーク低減法(Session(7)21世紀の燃料製造技術を目指して)
- 酸化鉄触媒による水蒸気雰囲気下でのオイルサンドビチューメンの分解における1-メチルナフタレン溶媒の効果
- ジメチルエーテルによるアスファルテンの溶剤分離
- ナフサ/酢酸二相系中での強酸触媒存在下における過酸化水素によるナフサの酸化脱硫
- 重質油の構造モデリング(反応モデリング-石炭・重質油・バイオマス-)
- 重質油の分子反応モデリング(反応モデリング-石炭・重質油・バイオマス-)
- 重質油構造解析の基礎 : 平均分子構造解析手法について
- 分子反応モデリング
- 重質油の反応化学 : 構造・反応解析の工業的意義について
- 1.6 石油類似資源(1 石油,II エネルギー資源の利用技術の進展と研究動向,平成22年における重要なエネルギー関係事項)
- 重質油からの燃料製造における課題(重質油からの燃料油製造)
- 1.6 石油類似資源(1 石油,II エネルギー資源の利用技術の進展と研究動向,平成21年における重要なエネルギー関係事項)
- 1.6 石油類似資源(1 石油,II エネルギー資源の利用技術の進展と研究動向,平成20年における重要なエネルギー関係事項)
- 1.6 石油類似資源(1. 石油,II エネルギー資源の利用技術の進展と研究動向,平成23年における重要なエネルギー関係事項)
- テフロンビーズ充填カラムを用いたアスファルテンの溶剤分別
- オイルサンドビチューメンの脱硫挙動に及ぼす超臨界水の影響