ヒルベルト類体の分解について
スポンサーリンク
概要
- 論文の詳細を見る
Let k be a number field and K a finite Galois extension of k. Let G be the Galois group of K over k and K' the Hilbert class field of K. Then K' is a Galois extension of k. Let H = G(K'/K) and E = G(K'/k). We have the group extension: [numerical formula] We will denote this group extension by E(K/k) and are interesting in the problem of when E(K/k) splits. We have the subfield of K over k whose Galois group over k is isomorphic to the p-Sylow subgroup of G when G is an abelian group. We will denote this subfield of K by K_p. In Section 1, we will give a field theoretic characterization for E(K/k) to split when G is a cyclic group. In Section 2, we will prove that E(K/k) splits if E(K_p/k) splits for all p-Sylow subgroups of G when G is an abelian group. In Section 3, we will prove that E(K/k) splits if and only if E(K_p/k) splits for all p-Sylow subgroups of G when K is an unramified cyclic extension of k.
- 明治大学の論文
著者
関連論文
- ヒルベルト類体の分解について
- 実アベール体のZ_P拡大のλ不変数について
- On Zp-Extensions of Real Abelian Fields
- Artinian ring上のcentral separable algelraのGaloisの理論
- Dedekind domain上のcentral separable algebraのGalois theoryについて
- Central separable algebraのGalois拡大について