実アベール体のZ_P拡大のλ不変数について
スポンサーリンク
概要
- 論文の詳細を見る
Let k be a finite real abelian extension of Q, r=[k:Q], p an odd prime number which splits completely in k and [numerical formula] the cyclotomic Z_p-extension. Let E_N be the unit group of k_n, N_<m,n>, the norm mapping from k_m to k_n (m≧n) and m the integer determined by E_0 which was defined in [1]. In this note, we shall show the following result : If N_<m-(r-1),0> (E_<m-(r-1)>)=E_0 and the class number of k is prime to p, then λ_p(k)=0, where λ_p(k) is the Iwasawa invariant of k for the p.
- 明治大学の論文
著者
-
稲富 彬
Department Of Mathematic School Of Science And Technology Meiji University
-
稲富 彬
School of Science and Technology, Meiji University
関連論文
- ヒルベルト類体の分解について
- 実アベール体のZ_P拡大のλ不変数について
- On Zp-Extensions of Real Abelian Fields
- Artinian ring上のcentral separable algelraのGaloisの理論
- Dedekind domain上のcentral separable algebraのGalois theoryについて
- Central separable algebraのGalois拡大について