正規作用素のbicommutantについて
スポンサーリンク
概要
- 論文の詳細を見る
Let H be a complex Hilbert space. A bounded linear operator T on H is said to be reductive if every invariant subspace for T is reducing. The commutant of a set S of bounded linear operators on H is the collection of all bounded linear operators on H which commute with each operator in S. The commutant of the commutant of S is called the bicommutant of S. A bounded linear operator T on H is said to be of class (BC) if the bicommutant of T coincides with the weakly closed algebra generated by T and the identity operator of H. In this paper we prove that a bounded linear normal operator on H is of class (BC) if and only if it is reductive.
- 明治大学の論文
著者
関連論文
- Rank One Commutators and Invariant Subspaces
- 正規作用素のbicommutantについて
- Boltzmann方程式の局所解の存在と一意性
- 量子統計力学におけるエルゴード定理 : 定常過程と完全正則性とr次の混合性(科学技術研究所年報第9号)
- 定常過程の完全正則性とr次の混合性
- ある定常過程の中心極限定理
- 強混合型の定常過程について