Methods and Concerns of Compensating In-Plane Switching Liquid Crystal Displays
スポンサーリンク
概要
- 論文の詳細を見る
It is well known that uncompensated in-plane switching(IPS)liquid crystal displays(LCDs)have much better viewing angle than conventional twisted-nematic(TN)LCDs. However, to achieve optimal viewing angle performance in these devices, they must be compensted by one or more films. In this paper, we will study the potimization of such compensation. We will show the benefit of using polatizers which do not have a birefringent substrate. We will also show the effect of which side of the LCD the compensation films are placed. Finally, we will investigate the surprising effect of the pretilt angle on the viewing angle of the compensated IPS LCD.
- 2000-11-15
著者
-
BOS Philip
Liquid Crystal Institute
-
Bos Philip
Liquid Crystal Institute And Chemical Physics Interdisciplinary Program
-
Anderson James
Liquid Crystal Institute And Chemical Physics Interdisciplinary Program
関連論文
- Influence of the Polymer Network on the Switching Behaviors in the Polymer Stabilized Ferroelectric Liquid Crystals
- Simple Multimode Stereoscopic Liquid Crystal Display
- Finite-Difference Time-Domain Optical Calculations of Polymer-Liquid Crystal Composite Electrodiffractive Device
- The High-Field Cured Polymer Networks in Nematic Liquid Crystals
- Studies of the Bistability of Highly Twisted Nematics
- Super-Twisted-Nematic Liquid Crystal Displays with Multi-Domain Structures
- Poincare Sphere Analysis of Reflective Liquid Crystal Device
- Long Term Bistable Twisted Nematic Liquid Crystal Display and Its Computer Simulations
- Nearly Homeotropically Aligned Four-Domain Liquid Crystal Display with Wide Viewing Angle
- Controlled Tilted Homeotropic Alignment of Liquid Crystals for Display Applications
- Methods to Obtain High-Contrast-Ratio Twisted Nematic Liquid Crystal Device at Wavelength of 1.55μm
- Viewing Angle Performance of a Polarization Interference Filter Based Passive Matrix Display
- Optical Compensation of Liquid Crystal Materials Using Negative Birefringence Compensation Films
- Four-Domain Twisted Nematic Liquid Crystal Display Fabricated by Two Alignment Layers with Low and High Pretilt Angles
- Methods and Concerns of Compensating In-Plane Switching Liquid Crystal Displays
- Multidimensional Director Modeling Using the Q Tensor Representation in a Liquid Crystal Cell and Its Application to the π Cell with Patterned Electrodes
- Optical Performance of the π Cell Compensated with a Negative-Birefringence Film and an A-plate
- In-Plane Liquid Crystal Beam Steering Devices with a Beam Separation Structure
- Comparison of Analytical Calculations to Finite-Difference Time-Domain Simulations of One-Dimensional Spatially Varying Anisotropic Liquid Crystal Structures
- High Speed Addressing of a 0°-360° Bistable Twisted Nematic Liquid Crystal Display
- Comparison and Analysis of Off-Axis Color Shift Properties of Compensated Liquid Crystal Devices
- Optimization of the White State Director Configuration for Perfectly Compensated Pi-cell Devices
- Uniform Vertical Alignment of Liquid Crystal That Has a Large Negative Dielectric Anisotropy
- Characterization of Ionic Impurities Adsorbed onto a 5° SiOx Alignment Film
- Poincare Sphere Analysis of Reflective Liquid Crystal Device
- Enhancement of the Direct Symmetric Splay to Bend Transition in Liquid Crystal Cell
- Finite-Difference Time-Domain Optical Calculations of Polymer-Liquid Crystal Composite Electrodiffractive Device
- A Method of Generating Full Color in a Liquid Crystal Display Using Birefringent Filters
- Methods to Obtain High-Contrast-Ratio Twisted Nematic Liquid Crystal Device at Wavelength of 1.55 μm
- Defect-Free Bistable C1 Surface Stabilized Ferroelectric Liquid Crystal Display
- Compensating a Twisted Nematic Liquid Crystal Display with Matched Wavelength Dispersion Retarders
- Conditions and Limitations of Perfect Phase Compensation in Liquid Crystal Devices
- In-Plane Liquid Crystal Beam Steering Devices with a Beam Separation Structure