Deterministic Boltzmann Machine Learning Improved for Analog LSI Implementation (Special Issue on New Architecture LSIs)
スポンサーリンク
概要
- 論文の詳細を見る
This paper describes the learning performance of the deterministic Boltzmann machine (DBM), which is a promising neural network model suitable for analog LSI implementation. (i) A new learning procedure suitable for LSI implementation is proposed. This is fully-on-line learning in which different sample patterns are presented in consecutive clamped and free phases and the weights are modified in each phase. This procedure is implemented without extra memories for learning operation, and reduces the chip area and power consumption for learning by 50 percent. (ii) Learning in a layer-type DBM with one output unit has characteristic local minima which reduce the effective number of available hidden units. Effective methods to avoid reaching these local minima are proposed. (iii) Although DBM learning is not suitable for mapping problems with analog target values, it is useful for analog data discrimination problems.
- 社団法人電子情報通信学会の論文
- 1993-07-25
著者
関連論文
- A CMOS Reaction-Diffusion Circuit Based on Cellular-Automaton Processing Emulating the Belousov-Zhabotinsky Reaction(Nonlinear Theory and Its Applications)
- Reaction-Diffusion Devices Using Minority-Carrier Transport in Semiconductors
- Analog Computation Using Coupled-Quantum-Dot Spin Glass (Special Issue on Integrated Electronics and New System Paradigms)
- Method for Determining Weight Coefficients for Quantum Boltzmann Machine Neuron Devices
- Analog Computation Using Quantum-Dot Spin Glass
- Analog VLSI Implementation of Adaptive Algorithms by an Extended Hebbian Synapse Circuit
- Deterministic Boltzmann Machine Learning Improved for Analog LSI Implementation (Special Issue on New Architecture LSIs)
- Quantum-Boltzmann-Machine Neuron Device
- Directional Single-Electron-Tunneling Junction
- Very-High-Speed Analog Neural Network LSI Using Super Self-Aligned Si Bipolar Process Technology
- Simulation of Visible Light Induced Effects in a Tunnel Junction Array for Photonic Device Applications
- Photoirradiation Effects in a Single-Electron Tunnel Junction Array (Special Issue on Technology Challenges for Single Electron Devices)
- Photo-Irradiation Effects in Single-Electron Tunnel Junction Arrays
- Simulations of Relaxation Processes for Non-Equilibrium Electron Distributions in Two-Dimensional Tunnel Junction Arrays ( Quantum Dot Structures)
- Eliciting the Potential Functions of Single-Electron Circuits (Special Issue on New Concept Device and Novel Architecture LSIs)
- Single-Electron Logic Systems Based on the Binary Decision Diagram (Special Issue on Technology Challenges for Single Electron Devices)