Contact Resistances at Nano Interfaces of Conducting Polymers, Poly(3-alkylthiophene) and Metals of Al and Au(Nano-interfacial Properties)(<Special Section>Recent Progress of Organic Molecular Electronics)
スポンサーリンク
概要
- 論文の詳細を見る
Electrical properties of contacts between head-tail coupled poly(3-hexylthiophene), PHT and Al (and Au) in planer type and sandwich type diodes of Al/PHT/Au have been studied. The contact resistances are directly evaluated by probing the potential profile of PHT between the metal electrodes using micromanipulators installed in scanning electron microscope. In the potential profile of planer type diode, a large potential cliff is observed at Al/PHT interface and some appreciable potential step is also found at PHT/Au interface. The contact resistance at the Al/PHT interface deduced from the potential profile shows the bias and its polarity dependence, indicating the existing of the Schottky like junction. At forward bias, it is found that the residual resistance at Al/PHT interface limits the diode performance. The residual resistance is supposed to be insulating layer of Al oxide. At larger reversed bias, the contact resistance at Al/PHT decreased abruptly due to the Zener breakdown. The potential profile of sandwich type diode is similar to that of planer type diode. It is found that even the PHT/Au contact shows the ohmic behavior, the contact resistance is significant as to limit the maximum current of the cells.
- 社団法人電子情報通信学会の論文
- 2004-02-01
著者
-
KANETO Keiichi
Graduate School of Life Science and System Engineering, Kyushu Institute of Technology
-
TAKASHIMA Wataru
Graduate School of Life Sciences and Systems Engineering, Kyushu Institute of Technology
-
Kaneto Keiichi
Graduate School Of Life Science And Systems Engineering Kyushu Institute Of Technology
-
Takashima Wataru
Graduate School Of Life Science And Systems Engineering Kyushu Institute Of Technology
-
Kaneto Keiichi
Graduate School Of Life Science And System Engineering Kyushu Institute Of Technology
-
Takashima Wataru
Graduate School of Life Science and System Engineering, Kyushu Institute of Technology, Kitakyushu 808-0196, Japan
関連論文
- A Steady Operation of n-Type Organic Thin-Film Transistors with Cyano-Substituted Distyrylbenzene Derivative
- Characterization of Depletion Layer using Photoluminescence Technique
- Enhanced Electrochemiluminescence by Use of Nanoporous TiO_2 Electrodes : Electrochemiluminescence Devices Operated with Alternating Current
- Improved Cathodic Expansions of Electrochemomechanical Behavior in Polypyrrole Films Electrodeposited from Aerosol OT Emulsion
- Cyclic Step-voltammetric Analysis of Cation-driven and Anion-driven Actuation in Polypyrrole Films
- Investigation of Depletion Layer at Interface of Poly(3-hexylthiophene) and Aluminum
- Comparative Study of Electrochemomechanical Deformations of Poly(3-alkylthiophene)s, Polyanilines and Polypyrrole Films : Atoms, Molecules, and Chemical Physics
- Enhancement of Transport Characteristics in Poly(3-hexylthiophene) Films Deposited with Floating Film Transfer Method
- Ambipolar Field-Effect Transistors Based on Poly(3-hexylthiophene)/Fullerene Derivative Bilayer Films
- Characteristics of Field Effect Transistors based on Fullerene Derivatives
- Enhanced Swelling Behaviors of Polypyrrole Film Doped with Sulfonated Polyaniline
- Ambipolar Transport in Field-Effect Transistors Based on Composite Films of Poly(3-hexylthiophene) and Fullerene Derivative
- Fast and Large Stretching Bis(trifluoromethylsulfonyl)imide (TFSI)-doped Polypyrrole Actuators and Their Applications to Small Devices
- Fast Response Polypyrrole Actuators with Auxiliary Electrodes
- Artificial Fibular Muscles with 20% Strain Based on Polypyrrole-Metal Coil Composites
- Comparison of Conducting Polymer Actuators Based on Polypyrrole Doped with BF_4^-, PF_6^-, CF_3SO_3^-, and ClO_4^-
- Gel-like Polypyrrole Based Artificial Muscles with Extremely Large Strain
- The Correlation between Electrically Induced Stress and Mechanical Tensile Strength of Polypyrrole Actuators
- Artificial Muscles Based on Polypyrrole Actuators with Large Strain and Stress Induced Electrically
- Contact Resistances at Nano Interfaces of Conducting Polymers, Poly(3-alkylthiophene) and Metals of Al and Au(Nano-interfacial Properties)(Recent Progress of Organic Molecular Electronics)
- Polypyrrole-metal Coil Composites as Fibrous Artificial Muscles
- Highly Stretchable and Powerful Polypyrrole Linear Actuators
- Surface Profile Sensing with Matrixed Conducting Polymers
- Surface Profile Sensing with Matrixed Conducting Polymers
- Robust Hole Transport in a Thienothiophene Derivative toward Low-cost Electronics
- Fast Response Polypyrrole Actuators with Auxiliary Electrodes
- Electrochemical Creeping and Actuation of Polypyrrole in Ionic Liquid
- Comparative Study on Gate Insulators of Polymers and SiO2 in Transport Properties of p- and n-Type Organic Field-Effect Transistors
- Shape Retention in Polyaniline Artificial Muscles
- Optical and Transport Anisotropy in Poly(9,9'-dioctyl-fluorene-alt-bithiophene) Films Prepared by Floating Film Transfer Method
- Memory Effects in Poly(3-hexylthiophene) Field-Effect Transistors with Floating Gate
- Optical and Electrical Characterization of Poly(3-hexylthiophene-2,5-diyl) Interface with Al and LiF
- Investigation of Depletion Layer at Interface of Poly(3-hexylthiophene) and Aluminum
- Ambipolar Field-Effect Transistors Based on Poly(3-hexylthiophene)/Fullerene Derivative Bilayer Films
- Study of Gate Induced Channel in Organic Field Effect Transistors Using Poly(3-hexylthiophene) Films
- Ambipolar Transport in Field-Effect Transistors Based on Composite Films of Poly(3-hexylthiophene) and Fullerene Derivative
- Effect of Glucose Oxidase Immobilizing Techniques on Performances of Nano Scale Polypyrrole Glucose Biosensors