Reliability of 3-D Reconstruction by Stereo Vision
スポンサーリンク
概要
- 論文の詳細を見る
Theoretically, corresponding pairs of feature points between two stereo images can determine their 3-D locations uniquely by triangulation. In the presence of noise, however, corresponding feature points may not satisfy the epipolar equation exactly, so we must first correct the corresponding pairs so as to satisfy the epipolar equation. In this paper, we present an optimal correction method based on a statistical model of image noise. Our method allows us to evaluate the magnitude of image noise a posteriori and compute the covariance matrix of each of the reconstructed 3-D points. We demonstrate the effectiveness of our method by doing numerical simulation and real-image experiments.
- 社団法人電子情報通信学会の論文
- 1995-10-25
著者
-
Kanazawa Yasushi
Department Of Information And Computer Engineering Gunma College Of Technology
-
Kanatani Kenichi
Department Of Computer Science Gunma University
-
KANAZAWA Yasushi
Department of Information and Computer Engineering, Gunma College of Technology
関連論文
- Geometric BIC
- Uncalibrated Factorization Using a Variable Symmetric Affine Camera(Image Recognition, Computer Vision)
- Statistical Optimization for 3-D Reconstruction from a Single View(Image Recognition and Understanding)
- Do We Really Have to Consider Covariance Matrices for Image Feature Points?
- Optimal Conic Fitting and Reliability Evaluation
- Infinity and Planarity Test for Stereo Vision
- Direct Reconstruction of Planar Surfaces by Stereo Vision
- Reliability of Fitting a Plane to Range Data
- Optimal Line Fitting and Reliability Evaluation
- Optimizing a Triangular Mesh for Shape Reconstruction from Images(Image Recognition and Understanding)
- Outlier Removal for Motion Tracking by Subspace Separation
- Extending Interrupted Feature Point Tracking for 3-D Affine Reconstruction(Image Recognition, Computer Vision)
- Optimization without Minimization Search : Constraint Satisfaction by Orthogonal Projection with Applications to Multiview Triangulation
- Multi-Stage Unsupervised Learning for Multi-Body Motion Segmentation(Image Recognition, Computer Vision)
- Reliability of 3-D Reconstruction by Stereo Vision
- High Accuracy Fundamental Matrix Computation and Its Performance Evaluation(Image Recognition, Computer Vision)
- Ellipse Fitting with Hyperaccuracy(Image Recognition, Computer Vision)
- Renormalization for Motion Analysis: Statistically Optimal Algorithm (Special Issue on Computer Vision)
- Optimal Structure-from-Motion Algorithm for Optical Flow
- Optimal grid pattern for focal length calibration
- Hyperaccurate Correction of Maximum Likelihood for Geometric Estimation
- Hyperaccurate Correction of Maximum Likelihood for Geometric Estimation
- Color Image Enhancement for Dichromats by Additive Image Noise
- Optimal Robot Self-Localization and Accuracy Bounds