高分子流体の積分型構成式
スポンサーリンク
概要
- 論文の詳細を見る
Taking into account the effects of the flow history on the rate of formation and breaking of junction points, the memory function Lodge's equation is modified as follows : [numerical formula] here H(λ), λ and β are relaxation spectrum in the linear region, relaxation time and a dimension less parameter respectively. R(t';λ) and R_0(λ) are the rate of formation of junction points at time t' in the nonlinear and linear region, respectively. C^<-1>(t') is the Finger strain and I is the unit tensor. Using this memory function, the integral consititutive equation is represented by stress tensor, by [numerical formula] where τ, p and ε are stress tender, hydrostatic pressure and dimensionless parameter respectively. C(t') is the Cauchy-Green strain tensor. In the case of R(t';λ)=R_0(λ), this constitutive equation makes the following predictions. (1) The non-Newtonian viscosity curve for the broad box type relaxation spectrum is nearly the same as the Bueche-Harding stand curve. (2) The non-Newtonian viscosity curve for the narrow box type relaxation spectrum (including the case of single relaxation time) properly represents non-Newtonian viscosities of monodisperse polystyrene melts. (3) The first normal stress coefficient is proportional to γ^^・<-1.5> for large shear rate γ^^・.
- 社団法人日本材料学会の論文
- 1971-05-15
著者
関連論文
- 毛管法による法線応力差の測定について
- 分子量分布が狭い高分子流体の分子量と非ニュートン粘度の関係について
- 高分子流体の積分型構成式
- 硬質塩化ビニル樹脂の高温における変形の回復
- 試作したねじりリラクゼーション試験機について
- 空気炉過の研究〔2〕
- カオリン懸濁液の砂濾過の軌道理論による解析
- 清澄濾過における初期粒子捕集機構
- 繊維充填層を用いた清澄濾過における粒子捕捉機構の軌道理論による解析