岩石強度の確率論的考察
スポンサーリンク
概要
- 論文の詳細を見る
A considerable difference between the fracture stresses theoretically calculated and those actually observed is usually explained by the presence of minute flaws, the so-called Griffith cracks, in the material. Assuming that the fracture is caused by the stress concentration around Griffith cracks, a statistical theory of brittle fracture is given which could be applied to arbitrary stress field. In this theory, the distribution of strength of test piece is related to the distribution of shapes of Griffith cracks. In this paper, it is supposed that the probability density function of the shape of Griffith cracks is f(ξ_0)=δk^δ/ξ_0(δ+1)・exp{-(k/ξ_0)^δ} where ξ_0 is the index of the shape or flatness of Griffith cracks. Based on this probability density function of the shape of Griffith cracks and some assumption concerning the stress concentration around cracks, the size effects of the uniaxial tensile and compressive strengths are calculated and given in the equation wh ich coincide with the formula derived from Weibull's distribution function, that is, S_t=C_t・k・s・n^<-1/m> for the uniaxial tensile strength of the test piece which contains n cracks, where C_t is a constant, and s is the theoretically calculated fracture stress. In the calculations of the uniaxial compressive strength, besides Griffith's theory, a modified Griffith theory by McClintock and Walsh is considered. As the result of these calculations, the relations between the parameter of the distribution function of the shape of Griffith cracks δand Weibull's coefficient of uniformity m are given in graphs. And the relations between the parameter δ and the "brittleness index" (the ratio between the uniaxial compressive and tensile strength) is given in another graph. Using these graphs, the dispersions are given : (1) The brittleness index is not always a constant, but is a function of the distribution of shapes of Griffith cracks. (2) Besides the "inherent" dispersion discussed in this paper, these may be some experimental errors. Based on the theoretical aspect given in this paper, it is possible to evaluate the difference of experimental errors between the uniaxial compressive and tensile strength.
- 社団法人日本材料学会の論文
- 1968-10-15
著者
関連論文
- 時間効果を考慮したき裂進展のモデル : 三城目安山岩の場合
- 湿潤状態での岩石の一軸圧縮強度の載荷速度依存性(岩石力学小特集)
- 岩石の圧縮荷重下における破壊き裂の発生・成長とAcoustic Emission (岩石力学小特集)
- ボアホ-ル調壁の破壊に関する破壊力学的研究-1-一軸圧縮試験
- 岩石の圧縮破壊過程のシミュレ-ション-1-
- 圧縮破壊過程のシミュレ-ション-2-圧縮荷重下における岩石の応力-ひずみ曲線と破壊き裂の発生・成長
- 岩石の圧縮破壊過程(岩石力学小特集)
- 全断面方式トンネル掘進機の地質に対する適用性
- 吹き付けた鋼繊維補強モルタルの曲げ強度
- 岩石の摩耗能と削岩機のビット摩耗に関する基礎研究
- 岩石の強度の寸法効果と測定精度
- TBMのグリッパーを利用した岩盤試験法の検討
- 岩石の一軸圧縮試験においてひずみ速度が破壊強度に与える影響
- 岩石の引張遅れ破壊寿命の分布特性に関する確率過程論的研究
- 坑道・トンネルの断面の測量方法(Tunnels&Tunnelling,Vol.8,No.4,1976)
- 350t・ダンプ・トラックの開発(Min.Congr.J.,62,Jan.1976)
- 335 岩石の破壊靭性値について
- 岩石掘さくと掘さく機械
- 岩石の疲労寿命の分布特性と破壊機構
- 片振り引張荷重による岩石の疲労破壊の確率過程論的考察
- 岩石の疲労寿命に及ぼす平均応力および応力振幅の影響
- 岩石の力学的模型の新要素について
- 岩石強度の確率論的考察
- クラス II 岩石の周圧下の挙動の載荷速度依存性(岩石力学小特集)
- Robots in mining.