有限体上の離散対数問題 : 数体ふるい法,関数体ふるい法
スポンサーリンク
概要
- 論文の詳細を見る
Since the invention of the public-key cryptosystem in the 1970's, some number theoretic problems such as the integer factoring and the discrete logarithm problem in finite fields have received a lot of attention. The number field sieve method is currently known as the asymptotically fastest integer factoring algorithm. It is also known that the number field sieve method can be made use of computing discrete logarithms in finite fields due to Gordon and Schirokauer. Besides, Adleman proposed a function field analogue of the number field sieve method, which is known as the function field sieve, to compute discrete logarithms in finite fields. This paper surveys recent results on these two methods, the number field sieve and the function field sieve, of computing discrete logarithms in finite fields.
- 日本応用数理学会の論文
- 2003-06-25
著者
関連論文
- p^rq型合成数に対するVanstone-Zuccherato方式についての考察
- 非特異楕円曲線上の一方向性関数の提案
- Jacobi signatureを用いたN=p^r×q型の合成数に対する素因数分解アルゴリズム(数論アルゴリズムとその応用,その1)
- 逐次開示可能なコミットメント方式とその応用
- A-7-1 MOVアルゴリズムについての注意
- MOVアルゴリズムについての注意
- トレース2の楕円曲線上の離散対数問題について
- 公開鍵暗号「EPOC」および「PSEC」
- 楕円暗号の数理 (代数曲線とその応用論文小特集)
- 公開鍵暗号の最近の話 : 楕円曲線暗号の安全性について
- 無交信IDべース暗号方式
- ElGama暗号を用いた秘密回路計算について
- 拡張離散対数問題の構成とその応用について(ブロードバンドモバイル時代における基礎技術)(情報通信サブソサイエティ合同研究会)
- 拡張離散対数問題の安全性について
- 互いに可換な複数の半群の作用を持つ環に基づく鍵共有方式
- ElGama暗号を用いた秘密回路計算について
- 拡張離散対数問題の構成とその応用について(ブロードバンドモバイル時代における基礎技術)(情報通信サブソサイエティ合同研究会)
- 拡張離散対数問題の構成とその応用について(ブロードバンドモバイル時代における基礎技術)(情報通信サブソサイエティ合同研究会)
- 互いに可換な複数の半群の作用を持つ環に基づく鍵共有方式
- トレース2の楕円曲線上の離散対数問題について
- 1. 数論アルゴリズムと公開鍵暗号の安全性(1. 21世紀初頭の暗号技術)(電子社会を推進する暗号技術)
- 数論アルゴリズムとその応用 : 研究部会活動報告
- EUROCRYPTO'98 : 国際会議報告
- 逐次開示可能なコミットメント方式とその応用
- 逐次開示可能なコミットメント方式とその応用
- 逐次開示可能なコミットメント方式とその応用
- LLLアルゴリズムを用いた素因数分解法について
- 2 安全性が証明された新しい公開鍵暗号 (公開鍵暗号の最近の話)
- 安全性の証明のついた公開鍵暗号:EPOCおよびPSEC (特集論文 暗号--アルゴリズムと安全性)
- 素数判定アルゴリズム
- 有限体上の離散対数問題 : 数体ふるい法,関数体ふるい法
- 素因数分解と等価に安全な新しい公開鍵暗号方式