Deep Root Water Uptake Ability and Water Use Efficiency of Pearl Millet in Comparison to Other Millet Species(Crop Physiology and Ecology)
スポンサーリンク
概要
- 論文の詳細を見る
Pearl millet is better adapted to hot and semi-arid conditions than most other major cereals. The objective of this study was to compare the deep water uptake ability and water use efficiency (WUE) of pearl millet among millet species. First, the WUE of six millet species was evaluated in pots under waterlogging, well-watered (control), and drought conditions. Secondly, the water uptake from deep soil layers by pearl millet and barnyard millet, which showed the highest drought and waterlogging tolerance, respectively, was compared in long tubes which consisted of three parts (two loose soil layers separated by a hardpan and a Vaseline layer). Soil moisture was adjusted to well-watered and drought conditions in the upper (topsoil) layer, while the lower (deep) layer was always kept wet. WUE was significantly reduced in all millet species by waterlogging but not by drought. The ratio of WUE to the control condition indicated that pearl millet had the highest and lowest resistances to drought and waterlogging conditions, respectively, while barnyard millet was the most stable under both conditions. The deuterium concentration in xylem sap water, relative water uptake from deep soil layers, and water uptake efficiency of deep roots were significantly increased in barnyard millet but not in pearl millet by drought in topsoil layers. In conclusion, the drought resistance of pearl millet is explained by higher WUE but not by increased water uptake efficiency in deep soil layers as compared to barnyard millet, another drought-resistant millet species.
- 日本作物学会の論文
著者
-
Iijima Morio
Graduate School of Bioagricultural Sciences, Nagoya University
-
Iijima Morio
Graduate School Of Bioagricultural Sciences Nagoya University
-
Zegada Lizarazu
Graduate School of Bioagricultural Sciences, Nagoya University
-
Zegada Lizarazu
Graduate School Of Bioagricultural Sciences Nagoya University
関連論文
- Water Acquisition from the Seasonal Wetland and Root Development of Pearl Millet Intercropped with Cowpea in a Flooding Ecosystem of Northern Namibia(Crop Physiology and Ecology)
- Effects of Common Soil Protozoa on the Growth of Rice(Abstract of Presentations at the 136th Meeting)
- The mucilage-border cell complex contributes to growth enhancement of rice plants through interactions with soil protozoa
- Mixed Planting with Legumes Modified the Water Source and Water Use of Pearl Millet(Crop Physiology and Ecology)
- Crop Production in Namibia : Present Situation and Perspectives
- Deep Root Water Uptake Ability and Water Use Efficiency of Pearl Millet in Comparison to Other Millet Species(Crop Physiology and Ecology)
- Productivity and Water Source of Intercropped Wheat and Rice in a Direct-sown Sequential Cropping System : The Effects of No-tillage and Drought(Crop Physiology and Ecology)
- Fractal and Multifractal Analysis of Cassava Root System Grown by the Root-Box Method
- Deep Rooting in Winter Wheat : Rooting Nodes of Deep Roots in Two Cultivars with Deep and Shallow Root Systems
- No-Tillage Enhanced the Dependence on Surface Irrigation Water in Wheat and Soybean(Crop Physiology and Ecology)
- Pearl Millet Developed Deep Roots and Changed Water Sources by Competition with Intercropped Cowpea in the Semiarid Environment of Northern Namibia(Crop Physiology and Ecology)
- Water Competition of Intercropped Pearl Millet with Cowpea under Drought and Soil Compaction Stresses(Crop Physiology and Ecology)
- Combined Soil Physical Stress of Soil Drying, Anaerobiosis and Mechanical Impedance to Seedling Root Growth of Four Crop Species(Crop Physiology and Ecology)
- Erosion Control on a Steep Sloped Coffee Field in Indonesia with Alley Cropping, Intercropped Vegetables, and No-Tillage
- Which Roots Penetrate the Deepest in Rice and Maize Root Systems?
- Maize-Soybean-Cowpea Sequential Cropping as a Sustainable Crop Production for Acid-Infertile Clay Soils in Indonesia(Agronomy)
- Cassava-Based Intercropping Systems on Sumatra Island in Indonesia : Productivity, Soil Erosion, and Rooting Zone(Agronomy)
- Root System Development Including Root Branching in Cuttings of Cassava with Reference to Shoot Growth and Tuber Bulking
- Structure and Function of the Root Cap
- Physiol-Morphological Analysis on Axile Root Growth in Upland Rice
- Root System Development of Cassava and Sweetpotato during Early Growth Stage as Affected by High Root Zone Temperature
- Interspecific differences in water uptake and water use efficiency of millets grown under water stresses
- Hydrogen Stable Isotope Analysis of Water Acquisition Ability of Deep Roots and Hydraulic Lift in Sixteen Food Crop Species(Crop Physiology and Ecology)
- A comparative study of deep root wwater uptake efficiency by different millet species
- Crop Production in Successive Wheat-Soybean Rotation with No-Tillage Practice in Relation to the Root System Development(Agronomy)