Combined Soil Physical Stress of Soil Drying, Anaerobiosis and Mechanical Impedance to Seedling Root Growth of Four Crop Species(Crop Physiology and Ecology)
スポンサーリンク
概要
- 論文の詳細を見る
Soil compaction often creates combined physical stresses of drought, anaerobiosis, and mechanical impedance in field soil. This paper aims to analyze the effect of combined and independent soil physi cal stresses on crop root growth to find out the species-specific response to the physical stresses, which has not been reported before. Drying stress without the increase of mechanical impedance was evaluated in a very loose pot soil environment. This drying stress did not modify the root elongation rates of rice and pea by the 48h exposure to the stress environment. For maize and cotton, however, mild drying stress (-80kPa Ψw) enhanced root elongation by 17-18%, but severe drying stress (-900kPa Ψw) reduced it by 17-21% as compared with the control environment (-10kPa Ψw). The combined stress of drying and mechanical impedance nearly stopped the root elongation in all the species, while that of anaerobiosis and mechanical impedance did not stop the elongation of rice and cotton ; cotton elongated about 32% of control environment. In maize, root diameter was reduced by the severe drying stress due to the reduction in the number of cortical cell layer and diameters of both central cylinder and xylem vessel. In contrast, cotton showed a significant increment of cortex diameter, although overall diameter was not statistically increased by the severe drying stress. The ability of cotton to continue elongation under anaerobiosis and mechanical stress implied the higher penetration ability to the hard pan layer under the anaerobic condition just after the heavy rainfall.
著者
-
Iijima Morio
Graduate School of Bioagricultural Sciences, Nagoya University
-
Iijima Morio
Graduate School Of Bioagricultural Sciences Nagoya University
-
Kato Junko
Graduate School of Bioagricultural Sciences, Nagoya University
-
Kato Junko
Graduate School Of Bioagricultural Sciences Nagoya University
関連論文
- Water Acquisition from the Seasonal Wetland and Root Development of Pearl Millet Intercropped with Cowpea in a Flooding Ecosystem of Northern Namibia(Crop Physiology and Ecology)
- Effects of Common Soil Protozoa on the Growth of Rice(Abstract of Presentations at the 136th Meeting)
- The mucilage-border cell complex contributes to growth enhancement of rice plants through interactions with soil protozoa
- Mixed Planting with Legumes Modified the Water Source and Water Use of Pearl Millet(Crop Physiology and Ecology)
- Crop Production in Namibia : Present Situation and Perspectives
- Deep Root Water Uptake Ability and Water Use Efficiency of Pearl Millet in Comparison to Other Millet Species(Crop Physiology and Ecology)
- Productivity and Water Source of Intercropped Wheat and Rice in a Direct-sown Sequential Cropping System : The Effects of No-tillage and Drought(Crop Physiology and Ecology)
- Fractal and Multifractal Analysis of Cassava Root System Grown by the Root-Box Method
- Deep Rooting in Winter Wheat : Rooting Nodes of Deep Roots in Two Cultivars with Deep and Shallow Root Systems
- No-Tillage Enhanced the Dependence on Surface Irrigation Water in Wheat and Soybean(Crop Physiology and Ecology)
- Pearl Millet Developed Deep Roots and Changed Water Sources by Competition with Intercropped Cowpea in the Semiarid Environment of Northern Namibia(Crop Physiology and Ecology)
- Water Competition of Intercropped Pearl Millet with Cowpea under Drought and Soil Compaction Stresses(Crop Physiology and Ecology)
- Combined Soil Physical Stress of Soil Drying, Anaerobiosis and Mechanical Impedance to Seedling Root Growth of Four Crop Species(Crop Physiology and Ecology)
- Erosion Control on a Steep Sloped Coffee Field in Indonesia with Alley Cropping, Intercropped Vegetables, and No-Tillage
- Which Roots Penetrate the Deepest in Rice and Maize Root Systems?
- Maize-Soybean-Cowpea Sequential Cropping as a Sustainable Crop Production for Acid-Infertile Clay Soils in Indonesia(Agronomy)
- Cassava-Based Intercropping Systems on Sumatra Island in Indonesia : Productivity, Soil Erosion, and Rooting Zone(Agronomy)
- Root System Development Including Root Branching in Cuttings of Cassava with Reference to Shoot Growth and Tuber Bulking
- Structure and Function of the Root Cap
- Physiol-Morphological Analysis on Axile Root Growth in Upland Rice
- Root System Development of Cassava and Sweetpotato during Early Growth Stage as Affected by High Root Zone Temperature
- Interspecific differences in water uptake and water use efficiency of millets grown under water stresses
- Hydrogen Stable Isotope Analysis of Water Acquisition Ability of Deep Roots and Hydraulic Lift in Sixteen Food Crop Species(Crop Physiology and Ecology)
- A comparative study of deep root wwater uptake efficiency by different millet species
- Crop Production in Successive Wheat-Soybean Rotation with No-Tillage Practice in Relation to the Root System Development(Agronomy)
- The Effect of Dietary Fatty Acids on the Expression Levels and Activities of Hepatic Drug Metabolizing Enzymes