Mixed Planting with Legumes Modified the Water Source and Water Use of Pearl Millet(Crop Physiology and Ecology)
スポンサーリンク
概要
- 論文の詳細を見る
In semi-arid areas, pearl millet is an important staple food crop that is traditionally intercropped with cowpea. This study evaluated the water competition between pearl millet and cowpea using deuterated water. At vegetative stage, pearl millet biomass production was lower in the pearl millet-cowpea (PM-CP) combination than in the pearl millet-pigeon pea (PM-PP) and pearl millet-bambara nut (PM-BN) combinations. PM-CP used more water than PM-PP and PM-BN under well-watered conditions; however, all combinations used similar amounts of water under dry conditions. The biomass production, photosynthetic rates, transpiration rates, and midday leaf water potential of pearl millet at early flowering stage were not significantly reduced by mixed planting with cowpea sown two weeks later as compared with single planted pearl millet. When pearl millet and cowpea were sown at the same time, mix planting significantly increased the recovery rates of recently irrigated heavy water in pearl millet, but not in cowpea in both vegetative and early flowering stages. Midday leaf water potential and transpiration rates in pearl millet were lowered by mixed planting but those in cowpea were not. These indicate that the water source of pearl millet is shifted to the recently irrigated and easily accessible water. By contrast, when cowpea was sown two weeks later than pearl millet, this trend was not observed. These results provide new evidence on water competition in the PM-CP intercropping system; cowpea has higher ability to acquire existing soil water than pearl millet when both crops are sown at the same time.
- 日本作物学会の論文
著者
-
Iijima Morio
Graduate School of Bioagricultural Sciences, Nagoya University
-
Iijima Morio
Graduate School Of Bioagricultural Sciences Nagoya University
-
Zegada Lizarazu
Graduate School of Bioagricultural Sciences, Nagoya University
-
Niitembu Selma
Faculty of Agriculture and Natural Resources, Namibia University
-
Niitembu Selma
Faculty Of Agriculture And Natural Resources Namibia University
-
Zegada Lizarazu
Graduate School Of Bioagricultural Sciences Nagoya University
関連論文
- Water Acquisition from the Seasonal Wetland and Root Development of Pearl Millet Intercropped with Cowpea in a Flooding Ecosystem of Northern Namibia(Crop Physiology and Ecology)
- Effects of Common Soil Protozoa on the Growth of Rice(Abstract of Presentations at the 136th Meeting)
- The mucilage-border cell complex contributes to growth enhancement of rice plants through interactions with soil protozoa
- Mixed Planting with Legumes Modified the Water Source and Water Use of Pearl Millet(Crop Physiology and Ecology)
- Crop Production in Namibia : Present Situation and Perspectives
- Deep Root Water Uptake Ability and Water Use Efficiency of Pearl Millet in Comparison to Other Millet Species(Crop Physiology and Ecology)
- Productivity and Water Source of Intercropped Wheat and Rice in a Direct-sown Sequential Cropping System : The Effects of No-tillage and Drought(Crop Physiology and Ecology)
- Fractal and Multifractal Analysis of Cassava Root System Grown by the Root-Box Method
- Deep Rooting in Winter Wheat : Rooting Nodes of Deep Roots in Two Cultivars with Deep and Shallow Root Systems
- No-Tillage Enhanced the Dependence on Surface Irrigation Water in Wheat and Soybean(Crop Physiology and Ecology)
- Pearl Millet Developed Deep Roots and Changed Water Sources by Competition with Intercropped Cowpea in the Semiarid Environment of Northern Namibia(Crop Physiology and Ecology)
- Water Competition of Intercropped Pearl Millet with Cowpea under Drought and Soil Compaction Stresses(Crop Physiology and Ecology)
- Combined Soil Physical Stress of Soil Drying, Anaerobiosis and Mechanical Impedance to Seedling Root Growth of Four Crop Species(Crop Physiology and Ecology)
- Erosion Control on a Steep Sloped Coffee Field in Indonesia with Alley Cropping, Intercropped Vegetables, and No-Tillage
- Which Roots Penetrate the Deepest in Rice and Maize Root Systems?
- Maize-Soybean-Cowpea Sequential Cropping as a Sustainable Crop Production for Acid-Infertile Clay Soils in Indonesia(Agronomy)
- Cassava-Based Intercropping Systems on Sumatra Island in Indonesia : Productivity, Soil Erosion, and Rooting Zone(Agronomy)
- Root System Development Including Root Branching in Cuttings of Cassava with Reference to Shoot Growth and Tuber Bulking
- Structure and Function of the Root Cap
- Physiol-Morphological Analysis on Axile Root Growth in Upland Rice
- Root System Development of Cassava and Sweetpotato during Early Growth Stage as Affected by High Root Zone Temperature
- Interspecific differences in water uptake and water use efficiency of millets grown under water stresses
- Hydrogen Stable Isotope Analysis of Water Acquisition Ability of Deep Roots and Hydraulic Lift in Sixteen Food Crop Species(Crop Physiology and Ecology)
- A comparative study of deep root wwater uptake efficiency by different millet species
- Crop Production in Successive Wheat-Soybean Rotation with No-Tillage Practice in Relation to the Root System Development(Agronomy)