Fractal and Multifractal Analysis of Cassava Root System Grown by the Root-Box Method
スポンサーリンク
概要
- 論文の詳細を見る
The root system development and its localized distribution were examined using cassava plants grown in narrow root boxes of appropriate sizes which were adjusted to the root growth. Analyses based on fractal geometry were applied in addition to measurements of the weight and length of the root systems to evaluate the root distribution quantitatively. The root system distribution was converted to a digitized image, and the fractal dimension was calculated by the box-counting method (D_<box>) for the whole root system and different positions in the soil. Furthermore, 1000 random measurements for local fractal dimension by the mass-radius method (D_<local>) were conducted per root system, and the multifractal spectrum was analyzed. The total root weight increased until 90 days after planting (DAP), whereas the total length ceased to increase at 60 DAP. Neither apparent bulking of storage root nor decrease in root length was observed during the experimental period. The potential rooting habit of cassava was two-dimensionally exhibited under a uniform soil environment in the boxes. The complexity in root distribution as a whole root system shown by the global D (D_<box>) was almost constant. However, both the trends in positional D_<box> difference and multifractal analysis showed that the root distribution was localized and heterogeneity in the localization changed with root system development. The root system of cassava grown in the boxes can be characterized as an abundant but uneven root distribution with a highly advanced branching pattern by large global D and kurtosis of the multifractal spectra.
- 日本作物学会の論文
著者
-
Izumi Yasuhiro
School of Environmental Science, The University of Shiga Prefecture
-
Iijima Morio
Graduate School of Bioagricultural Sciences, Nagoya University
-
Iijima Morio
Graduate School Of Bioagricultural Sciences Nagoya University
-
Izumi Yasuhiro
School Of Environmental Science The University Of Shiga Prefecture
関連論文
- Water Acquisition from the Seasonal Wetland and Root Development of Pearl Millet Intercropped with Cowpea in a Flooding Ecosystem of Northern Namibia(Crop Physiology and Ecology)
- Effects of Common Soil Protozoa on the Growth of Rice(Abstract of Presentations at the 136th Meeting)
- The mucilage-border cell complex contributes to growth enhancement of rice plants through interactions with soil protozoa
- Mixed Planting with Legumes Modified the Water Source and Water Use of Pearl Millet(Crop Physiology and Ecology)
- Crop Production in Namibia : Present Situation and Perspectives
- Effects of Subsoiling to the Non-tilled Field of Wheat-Soybean Rotation on the Root System Development, Water Uptake, and Yield
- Deep Root Water Uptake Ability and Water Use Efficiency of Pearl Millet in Comparison to Other Millet Species(Crop Physiology and Ecology)
- Productivity and Water Source of Intercropped Wheat and Rice in a Direct-sown Sequential Cropping System : The Effects of No-tillage and Drought(Crop Physiology and Ecology)
- Fractal and Multifractal Analysis of Cassava Root System Grown by the Root-Box Method
- Deep Rooting in Winter Wheat : Rooting Nodes of Deep Roots in Two Cultivars with Deep and Shallow Root Systems
- No-Tillage Enhanced the Dependence on Surface Irrigation Water in Wheat and Soybean(Crop Physiology and Ecology)
- Pearl Millet Developed Deep Roots and Changed Water Sources by Competition with Intercropped Cowpea in the Semiarid Environment of Northern Namibia(Crop Physiology and Ecology)
- Water Competition of Intercropped Pearl Millet with Cowpea under Drought and Soil Compaction Stresses(Crop Physiology and Ecology)
- Combined Soil Physical Stress of Soil Drying, Anaerobiosis and Mechanical Impedance to Seedling Root Growth of Four Crop Species(Crop Physiology and Ecology)
- Erosion Control on a Steep Sloped Coffee Field in Indonesia with Alley Cropping, Intercropped Vegetables, and No-Tillage
- Which Roots Penetrate the Deepest in Rice and Maize Root Systems?
- Maize-Soybean-Cowpea Sequential Cropping as a Sustainable Crop Production for Acid-Infertile Clay Soils in Indonesia(Agronomy)
- Cassava-Based Intercropping Systems on Sumatra Island in Indonesia : Productivity, Soil Erosion, and Rooting Zone(Agronomy)
- Root System Development Including Root Branching in Cuttings of Cassava with Reference to Shoot Growth and Tuber Bulking
- Structure and Function of the Root Cap
- Physiol-Morphological Analysis on Axile Root Growth in Upland Rice
- Root System Development of Cassava and Sweetpotato during Early Growth Stage as Affected by High Root Zone Temperature
- Interspecific differences in water uptake and water use efficiency of millets grown under water stresses
- Hydrogen Stable Isotope Analysis of Water Acquisition Ability of Deep Roots and Hydraulic Lift in Sixteen Food Crop Species(Crop Physiology and Ecology)
- A comparative study of deep root wwater uptake efficiency by different millet species
- Crop Production in Successive Wheat-Soybean Rotation with No-Tillage Practice in Relation to the Root System Development(Agronomy)