Nuclear Rotation, Nambu-Goldstone Mode and Higgs Mechanism : General
スポンサーリンク
概要
- 論文の詳細を見る
We discuss an interesting analogy between the Bohr model of nuclear collective rotation and the Higgs mechanism in spontaneously broken gauge theory. The rotation invariant Langrangian of the Bohr model, which is also regarded as a d=1 field theory with an internal O(3) symmetry, allows a spontaneously deformed solution and thus resulting in the appearance of zero energy Nambu-Goldstone modes. Our approach to the nuclear collective rotation is to formulate the theory to be form-invariant under an arbitrary time-dependent rotation. We treat a class of manifestly rotation invariant potentials, which led to the spontaneous breakdown of the rotation symmetry. The vector variables of angular velocity introduced as an analogue of time-dependent gauge fields then absorb those Nambu-Goldstone modes and give rise to "massive" rotational spectra with a finite moment of inertia. This may be regarded as an analogue of the Higgs mechanism, although not identical with it. We also comment on the nuclear collective rotation from a viewpoint of the quantization of the deformed "soliton solution" in the Bohr model.
- 理論物理学刊行会の論文
- 1986-05-25
著者
-
藤川 和男
Nihon Univ. Tokyo Jpn
-
藤川 和男
日大理工
-
Ui Haruo
Department Of Physics Hiroshima University
-
FUJIKAWA Kazuo
Research Institute for Theoretical Physics, Hiroshima University
-
UI Haruo
Department of Physics,Hiroshima University
関連論文
- Comment on the Uncertainty Relation with Periodic Boundary Conditions(General and Mathematical Physics)
- Clear Evasion of the Uncertainty Relation with Very Small Probability(General and Mathematical Physics)
- 標準模型の成立 (特集 電弱統一理論--素粒子物理学発展のキーワードを巡って)
- Uncertainty Relation and Probability : Numerical Illustration(General and Mathematical Physics)
- 物理学の対称性の様々な側面 (特集 〈隠れた〉物理法則--自然界の真相を探る)
- The (d,α) Reaction and Cluster Structure of Light Nuclei : the O^(d,α)N^ reaction
- Comment on Anomaly Matching in N = 1 Supersymmetric QCD : Particles and Fields
- 量子異常とは何か--対称性の原理と量子論の原理の相克 (特集 量子異常とは何か--量子化による対称性の破れ)
- A.Goldhaber, R.Shrock, J.Smith, G.Sterman, P.van Nieuwenhuizen and W.Weisberger, ed., 『Symmetry and Modern Physics; Yang Retirement Symposium』, World Scientific, New Jersey and Singapore, 2003, ix+291p., 25.5×17cm, 10,600円, [一般向]
- 非可換ゲージ場の量子論 (特集 可換から非可換へ--数学と物理が織りなすタピストリー)
- A Class of Simple Hamiltonians with Degenerate Ground State. II A Model of Nuclear Rotation : Spontaneous Breakdown of Rotation Symmetry and Goldstone Theorem for Finite Dimensional System
- Supersymmetric Quantum Mechanics and Fermion in a Gauge Feild of (1+2) Dimension
- A Deformable Bag Model of Hadrons. I
- Form Factor Sum Rule and Giant Multipole States
- Superspace Lagrangian Model of Supersymmetric Quantum Mechanics in Three-Dimensional Space (General)
- Does Accidental Degeneracy Imply a Symmetry Group? : Particles and Fields
- A Class of Simple hamiltonians with Degenerate Ground State. I
- An Application of Spontaneously Broken Local Gauge Theory to Molecular Dynamics : Are Coriolis and Centrifugal Forces Fictitious Force?
- Supersymmetric Quantum Mechanics in Three-Dimensional Space. I : One-Particle System with Spin-Orbit Potential : Nuclear Physics
- Quantum Mechanical Rigid Rotator with an Arbitrary Deformation. I : Dynamical Group Approach to Quadratically Deformed Body
- A Deformable Bag Model of Hadrons. II : Particles and Fields
- Boson Bogolyubov Transformation and the SU(1, 1) Group
- シュレーディンガー方程式--つきない謎 (特集 現象と物理概念を結ぶ方程式)
- 現代物理の思考法 (特集 物理的思考法のすすめ--諸分野におけるキーポイント)
- 物理の道しるべ 研究者の道とは何か(2)物理学への紆余曲折した道のり
- 量子異常と位相 (特集 物理における位相の世界--量子現象の幾何学)
- Topological Properties of Geometric Phases(Frontiers of Quantum Physics)
- 保存則とその量子的な破れ (特集 保存則とは何か--その展開と更なる深化をめざして)
- Remarks on Shannon's Statistical Inference and the Second Law in Quantum Statistical Mechanics
- スピンと統計の定理 (特集 スピンはさらにめぐる--量子力学の誕生から現代物理まで)
- ゲ-ジ場とその量子論 (特集 ゲ-ジ場理論の新展開)
- Nuclear Rotation, Nambu-Goldstone Mode and Higgs Mechanism : General
- Conditional Measurement in Noncontextual Hidden-Variable Models(General and Mathematical Physics)
- Does CHSH Inequality Test the Model of Local Hidden Variables?(General and Mathematical Physics)
- Clebsch-Gordan Formulas of the SU(1, 1) Group