Clear Evasion of the Uncertainty Relation with Very Small Probability(General and Mathematical Physics)
スポンサーリンク
概要
- 論文の詳細を見る
We entertain the idea that the uncertainty relation is not a principle, but rather it is a consequence of quantum mechanics. The uncertainty relation is then a probabilistic statement and can be clearly evaded in processes which occur with a very small probability in a tiny sector of the phase space. This clear evasion is typically realized when one utilizes indirect measurements, and some examples of the clear evasion appear in the system with entanglement though the entanglement by itself is not essential for the evasion. The standard Kennard's relation and its interpretation remain intact in our analysis. As an explicit example, we show that the clear evasion of the uncertainty relation for coordinate and momentum in the diffraction process discussed by Ballentine is realized in a tiny sector of the phase space with a very small probability. We also examine the uncertainty relation for a two-spin system with the EPR entanglement and show that no clear evasion takes place in this system with the finite discrete degrees of freedom.
- 2008-11-25
著者
-
FUJIKAWA Kazuo
Institute of Quantum Science, College of Science and Technology, Nihon University
-
UMETSU Koichiro
Institute of Quantum Science, College of Science and Technology, Nihon University
-
Umetsu Koichiro
Institute Of Quantum Science College Of Science And Technology Nihon University
-
藤川 和男
Nihon Univ. Tokyo Jpn
-
藤川 和男
日大理工
-
Fujikawa Kazuo
Institute For Nuclear Study University Of Tokyo
-
FUJIKAWA Kazuo
Institute for Nuclear Study, University of Tokyo:DESY
関連論文
- Comment on the Uncertainty Relation with Periodic Boundary Conditions(General and Mathematical Physics)
- Clear Evasion of the Uncertainty Relation with Very Small Probability(General and Mathematical Physics)
- Ward Identities in the Derivation of Hawking Radiation from Anomalies(Particles and Fields)
- 標準模型の成立 (特集 電弱統一理論--素粒子物理学発展のキーワードを巡って)
- Heavy Leptons, Weak Angles and a Sextet of Quarks
- Uncertainty Relation and Probability : Numerical Illustration(General and Mathematical Physics)
- 物理学の対称性の様々な側面 (特集 〈隠れた〉物理法則--自然界の真相を探る)
- Histochemical detection of X-ray induced oxidative stress in mice by 2',7'-dichlorofluorescin
- Quantization of Space-time Noncommutative Theory (Lecture) (〔素粒子論グループ〕SUMMER INSTITUTE 2004)
- Comment on Anomaly Matching in N = 1 Supersymmetric QCD : Particles and Fields
- Gauge symmetries in geometric phases(SUMMER INSTITUTE 2005)
- Non-Hermitian Radial Momentum Operator and Path Integrals in Polar Coordinates(Particles and Fields)
- On a Superfield Theoretical Treatment of the Higgs-Kibble Mechanism
- Bose-Fermi Supersymmetry at Finite Temperatures(Dynamical Symmetry and Supersymmetry in Nuclear, Particle, and Atomic-Molecular Physics)
- Lepton-Quark Symmetry, CP-Violation and the Decay μ→eγ
- 量子異常とは何か--対称性の原理と量子論の原理の相克 (特集 量子異常とは何か--量子化による対称性の破れ)
- A.Goldhaber, R.Shrock, J.Smith, G.Sterman, P.van Nieuwenhuizen and W.Weisberger, ed., 『Symmetry and Modern Physics; Yang Retirement Symposium』, World Scientific, New Jersey and Singapore, 2003, ix+291p., 25.5×17cm, 10,600円, [一般向]
- 非可換ゲージ場の量子論 (特集 可換から非可換へ--数学と物理が織りなすタピストリー)
- Comment on the Covariant Path Integral Formalism in the presence of Gribov Ambiguities
- Remark on Natural Models of Neutrinos(Particles and Fields)
- シュレーディンガー方程式--つきない謎 (特集 現象と物理概念を結ぶ方程式)
- 現代物理の思考法 (特集 物理的思考法のすすめ--諸分野におけるキーポイント)
- 物理の道しるべ 研究者の道とは何か(2)物理学への紆余曲折した道のり
- 量子異常と位相 (特集 物理における位相の世界--量子現象の幾何学)
- Topological Properties of Geometric Phases(Frontiers of Quantum Physics)
- 保存則とその量子的な破れ (特集 保存則とは何か--その展開と更なる深化をめざして)
- Remarks on Shannon's Statistical Inference and the Second Law in Quantum Statistical Mechanics
- スピンと統計の定理 (特集 スピンはさらにめぐる--量子力学の誕生から現代物理まで)
- ゲ-ジ場とその量子論 (特集 ゲ-ジ場理論の新展開)
- Nuclear Rotation, Nambu-Goldstone Mode and Higgs Mechanism : General
- Conditional Measurement in Noncontextual Hidden-Variable Models(General and Mathematical Physics)
- Does CHSH Inequality Test the Model of Local Hidden Variables?(General and Mathematical Physics)
- Non-Trivial Realization of the BRS Supersymmetry
- Dispersion Calculation of the S-Matrix in Gauge Theories