Gauge-Invariant Gravitational Wave Extraction from Coalescing Binary Neutron Stars
スポンサーリンク
概要
- 論文の詳細を見る
We report application of a method for extracting gravitational waves to three-dimensional numerical simulation on coalescing binary neutron stars. We found the extracted wave form includes the components corresponding to the quadrupole part in the Newtonian potential of the background metric, if it is monitored at a position not far from the central stars. We present how to eliminate it.
- 理論物理学刊行会の論文
- 2004-04-25
著者
-
OOHARA Ken-ichi
Department of Physics, Kyoto University
-
Oohara K
Department Of Physics Niigata University
-
Oohara Ken-ichi
National Laboratory For High Energy Physics
-
Oohara Ken-ichi
Department Of Oral Anatomy Kanagawa Dental College
-
OOHARA Kenichi
National Laboratory for High Energy Physics
-
Kawamura Mari
Graduate School Of Science And Technology Niigata University
-
KAWAMURA Mari
Graduate School of Science and Technology, Niigata University
関連論文
- Vacuum of Yang-Mills Theory and Dimensional Reduction(Recent Developments in QCD and Hadron Physics)
- Vacuum Wave Functional of Pure Yang-Mills Theory and Dimensional Reduction : Particles and Fields
- Structure of Superposed Two Kerr Metrics
- Regeneration of gingival microvascular architecture on the interface of endosseous titanium implants
- General Relativistic Collapse to Black Holes and Gravitational Waves from Black Holes
- Gauge-Invariant Gravitational Wave Extraction from Coalescing Binary Neutron Stars
- General Relativistic Gravitational Collapse of Rotating Star with Magnetic Fields : The Formalism and the Initial Value Equations
- Energy, Momentum and Angular Momentum of Gravitational Waves Induced by a Particle Plunging into a Schwarzschild Black Hole
- Three Dimensional Simulations of Supernova Explosion. I : Astrophysics and Relativity
- 3D General Relativistic Simulations of Coalescing Binary Neutron Stars
- Chapter 3 A Way to 3D Numerical Relativity
- Coalescence of Spinning Binary Neutron Stars with Plunging Orbit : Newtonian 3D Numerical Simulation : Astrophysics and Relativity
- Coalescence of Spinning Binary Neutron Stars of Equal Mass : 3D Numerical Simulations : Astrophysics and Relativity
- Gravitational Radiation from Coalescing Binary Neutron Stars. V : Post-Newtonian Calculation : Astrophysics and Relativity
- Gravitational Radiation from Coalescing Binary Neutron Stars. IV : Tidal Disruption : Astrophysics and Relativity
- Gravitational Radiation from Coalescing Binary Neutron Stars. III : Simulations from Equilibrium Model : Astrophysics and Relativity
- Gravitational Radiation from Coalescing Binary Neutron Stars. II : Simulations Including Back Reaction Potential : Astrophysics and Relativity
- Gravitational Radiation from Coalescing Binary Neutron Stars. I : Astrophysics and Relativity
- Gravitational Waves from a Particle Scattered by a Schwarzschild Black Hole : Astrophysics and Relativity
- Excitation of the Free Oscillation of a Schwarzschild Black Hole by the Gravitational Waves from a Scattered Test Particle : Astrophysics and Relativity
- Three-Dimensional Initial Data of Colliding Neutron Stars : Astrophysics and Relativity
- Numerical Study on the Hydrodynamic Instability of Binary Stars in the First Post Newtonian Approximation of General Relativity : Astrophysics and Relativity
- Gauge-Invariant Gravitational Wave Extraction from Coalescing Binary Neutron Stars
- 3D General Relativistic Simulations of Coalescing Binary Neutron Stars
- A Way to 3D Numerical Relativity
- Coalescence of Spinning Binary Neutron Stars with Plunging Orbit--Newtonian 3D Numerical Simulation
- Coalescence of Spinning Binary Neutron Stars of Equal Mass--3D Numerical Simulations
- Gravitational Radiation from Coalescing Binary Neutron Stars-5-Post-Newtonian Calculation
- Gravitational Radiation from Coalescing Binary Neutron Stars-4-Tidal Disruption
- Gravitational Radiation from Coalescing Binary Neutron Stars-3-Simulations from Equilibrium Model
- Gravitational Radiation from Coalescing Binary Neutron Stars-2-Simulations Including Back Reaction Potential
- Gravitational Radiation from a Coalescing Binary Neutron Stars-1-