特異摂動系の低次元H_∞制御
スポンサーリンク
概要
- 論文の詳細を見る
Many results concerning the linear quadratic control problems by means of the method of singular perturbation have been reported, since the first application of the method by P. Sannuti and P. Kokotovic in 1969. The robust stabilization problems in the singularly perturbed systems have also been discussed. However, the disturbance attenuation problems in such the systems which are significant in practice have not been studied yet. In this paper, the disturbance attenuation problems in the singularly perturbed system by means of H-infinity control strategy with constant weight are studied. The sufficient conditions for the disturbance attenuation as well as the stability in the singularly perturbed systems are given in theorems when the H-infinity control is applied. Numerical examples are also shown to demon-strate the results given.
- 東海大学の論文
著者
関連論文
- 構造的に不確定な線形系のロバストH_∞制御
- 1年次学生のためのロボット設計製作科目「創造工学演習」(もの作りとメカトロニクス2)
- 1A1-K03 1 年次科目「創造工学学習」における移動ロボットの設計製作
- Routh-Hurwitz 安定条件の初等的導出
- 半導体ダイオードを用いる折線回路の解析
- 増設系における縮約状態フィードバック : PID制御装置の準最適設計
- スパース行列式の一計算法
- 星状体概念によるフローグラフの解析法
- 線形二次形式指数関数ガウス形制御問題
- 特異摂動系の低次元H_∞制御
- 縮約状態推定を行う場合の増設系の準最適制御