Least-Squares Conditional Density Estimation
スポンサーリンク
概要
- 論文の詳細を見る
Estimating the conditional mean of an input-output relation is the goal of regression. However, regression analysis is not sufficiently informative if the conditional distribution has multi-modality, is highly asymmetric, or contains heteroscedastic noise. In such scenarios, estimating the conditional distribution itself would be more useful. In this paper, we propose a novel method of conditional density estimation that is suitable for multi-dimensional continuous variables. The basic idea of the proposed method is to express the conditional density in terms of the density ratio and the ratio is directly estimated without going through density estimation. Experiments using benchmark and robot transition datasets illustrate the usefulness of the proposed approach.
- 2010-03-01
著者
-
Takeuchi Ichiro
Nagoya Institute of Technology
-
Sugiyama Masashi
Tokyo Inst. Of Technol.
-
Hachiya Hirotaka
Tokyo Inst. Of Technol.
-
SUZUKI Taiji
The University of Tokyo
-
KANAMORI Takafumi
Nagoya University
-
OKANOHARA Daisuke
The University of Tokyo
-
Suzuki Taiji
University of Tokyo
-
Suzuki Taiji
The Univ. Of Tokyo
関連論文
- Statistical active learning for efficient value function approximation in reinforcement learning (ニューロコンピューティング)
- Lighting Condition Adaptation for Perceived Age Estimation
- Computationally Efficient Multi-task Learning with Least-squares Probabilistic Classifiers
- Differentially Aberrant Region Detection in Array CGH Data Based on Nearest Neighbor Classification Performance
- Differentially Aberrant Region Detection in Array CGH Data Based on Nearest Neighbor Classification Performance
- A Unified Framework of Density Ratio Estimation under Bregman Divergence
- Adaptive importance sampling with automatic model selection in value function approximation (ニューロコンピューティング)
- Improving Model-based Reinforcement Learning with Multitask Learning
- Improving Model-based Reinforcement Learning with Multitask Learning
- Least-Squares Conditional Density Estimation
- Direct Importance Estimation with a Mixture of Probabilistic Principal Component Analyzers
- カーネル密度比推定の統計的解析(学習問題の解析,テキスト・Webマイニング,一般)
- A Semi-Supervised Approach to Perceived Age Prediction from Face Images
- Information-maximization clustering: analytic solution and model selection (情報論的学習理論と機械学習)
- Conditional Density Estimation Based on Density Ratio Estimation
- Conditional Density Estimation Based on Density Ratio Estimation
- Least Absolute Policy Iteration-A Robust Approach to Value Function Approximation
- A density ratio approach to two-sample test (パターン認識・メディア理解)
- A density ratio approach to two-sample test (情報論的学習理論と機械学習)
- Theoretical Analysis of Density Ratio Estimation
- Independent component analysis by direct density-ratio estimation (ニューロコンピューティング)
- Analysis and improvement of policy gradient estimation (情報論的学習理論と機械学習)
- Multiclass Boosting Algorithms for Shrinkage Estimators of Class Probability(Artificial Intelligence and Cognitive Science)
- FOREWORD
- Superfast-Trainable Multi-Class Probabilistic Classifier by Least-Squares Posterior Fitting
- Direct Importance Estimation with Gaussian Mixture Models
- Improving the Accuracy of Least-Squares Probabilistic Classifiers
- Artist agent A[2]: stroke painterly rendering based on reinforcement learning (パターン認識・メディア理解)
- Artist agent A[2]: stroke painterly rendering based on reinforcement learning (情報論的学習理論と機械学習)
- Least-Squares Independence Test
- Efficient Sample Reuse in Policy Gradients with Parameter-based Exploration (情報論的学習理論と機械学習)
- Density Difference Estimation (情報論的学習理論と機械学習)
- Density-ratio matching under the Bregman divergence : a unified framework of density-ratio estimation
- Modified Newton Approach to Policy Search (情報論的学習理論と機械学習)
- Multiscale Bagging and Its Applications
- Relative Density-Ratio Estimation for Robust Distribution Comparison (情報論的学習理論と機械学習)
- Density Difference Estimation
- Winning the Kaggle Algorithmic Trading Challenge with the Composition of Many Models and Feature Engineering
- Artist Agent: A Reinforcement Learning Approach to Automatic Stroke Generation in Oriental Ink Painting
- Early stopping Heuristics in Pool-Based Incremental Active Learning for Least-Squares Probabilistic Classifier
- Computationally Efficient Multi-Label Classification by Least-Squares Probabilistic Classifiers
- Multi-Task Approach to Reinforcement Learning for Factored-State Markov Decision Problems
- Constrained Least-Squares Density-Difference Estimation
- A Density-ratio Framework for Statistical Data Processing
- Computationally Efficient Multi-task Learning with Least-squares Probabilistic Classifiers
- Efficient Sample Reuse in Policy Gradients with Parameter-based Exploration (情報論的学習理論と機械学習)
- Model-Based Policy Gradients with Parameter-Based Exploration by Least-Squares Conditional Density Estimation
- A Density-ratio Framework for Statistical Data Processing
- FOREWORD
- On Kernel Parameter Selection in Hilbert-Schmidt Independence Criterion