Winning the Kaggle Algorithmic Trading Challenge with the Composition of Many Models and Feature Engineering
スポンサーリンク
概要
- 論文の詳細を見る
This letter presents the ideas and methods of the winning solution* for the Kaggle Algorithmic Trading Challenge. This analysis challenge took place between 11th November 2011 and 8th January 2012, and 264 competitors submitted solutions. The objective of this competition was to develop empirical predictive models to explain stock market prices following a liquidity shock. The winning system builds upon the optimal composition of several models and a feature extraction and selection strategy. We used Random Forest as a modeling technique to train all sub-models as a function of an optimal feature set. The modeling approach can cope with highly complex data having low Maximal Information Coefficients between the dependent variable and the feature set and provides a feature ranking metric which we used in our feature selection algorithm.
著者
-
Sugiyama Masashi
Tokyo Inst. Of Technol.
-
Sugiyama Masashi
Tokyo Institute Of Technology
-
MAGRANS DE
Tokyo Institute of Technology
関連論文
- Statistical active learning for efficient value function approximation in reinforcement learning (ニューロコンピューティング)
- Lighting Condition Adaptation for Perceived Age Estimation
- Computationally Efficient Multi-task Learning with Least-squares Probabilistic Classifiers
- A Unified Framework of Density Ratio Estimation under Bregman Divergence
- Adaptive importance sampling with automatic model selection in value function approximation (ニューロコンピューティング)
- Improving Model-based Reinforcement Learning with Multitask Learning
- Improving Model-based Reinforcement Learning with Multitask Learning
- Least-Squares Conditional Density Estimation
- Direct Importance Estimation with a Mixture of Probabilistic Principal Component Analyzers
- カーネル密度比推定の統計的解析(学習問題の解析,テキスト・Webマイニング,一般)
- A Semi-Supervised Approach to Perceived Age Prediction from Face Images
- Conditional Density Estimation Based on Density Ratio Estimation
- Conditional Density Estimation Based on Density Ratio Estimation
- A density ratio approach to two-sample test (パターン認識・メディア理解)
- A density ratio approach to two-sample test (情報論的学習理論と機械学習)
- Theoretical Analysis of Density Ratio Estimation
- FOREWORD
- Superfast-Trainable Multi-Class Probabilistic Classifier by Least-Squares Posterior Fitting
- Direct Importance Estimation with Gaussian Mixture Models
- Improving the Accuracy of Least-Squares Probabilistic Classifiers
- Artist agent A[2]: stroke painterly rendering based on reinforcement learning (パターン認識・メディア理解)
- Artist agent A[2]: stroke painterly rendering based on reinforcement learning (情報論的学習理論と機械学習)
- Least-Squares Independence Test
- Density Difference Estimation
- Winning the Kaggle Algorithmic Trading Challenge with the Composition of Many Models and Feature Engineering
- Artist Agent: A Reinforcement Learning Approach to Automatic Stroke Generation in Oriental Ink Painting
- Early stopping Heuristics in Pool-Based Incremental Active Learning for Least-Squares Probabilistic Classifier
- Computationally Efficient Multi-Label Classification by Least-Squares Probabilistic Classifiers
- Multi-Task Approach to Reinforcement Learning for Factored-State Markov Decision Problems
- Constrained Least-Squares Density-Difference Estimation
- A Density-ratio Framework for Statistical Data Processing
- Computationally Efficient Multi-task Learning with Least-squares Probabilistic Classifiers
- Model-Based Policy Gradients with Parameter-Based Exploration by Least-Squares Conditional Density Estimation
- A Density-ratio Framework for Statistical Data Processing
- FOREWORD
- On Kernel Parameter Selection in Hilbert-Schmidt Independence Criterion