A Density-ratio Framework for Statistical Data Processing
スポンサーリンク
概要
- 論文の詳細を見る
In statistical pattern recognition, it is important to avoid density estimation since density estimation is often more difficult than pattern recognition itself. Following this idea — known as Vapnik's principle, a statistical data processing framework that employs the ratio of two probability density functions has been developed recently and is gathering a lot of attention in the machine learning and data mining communities. The purpose of this paper is to introduce to the computer vision community recent advances in density ratio estimation methods and their usage in various statistical data processing tasks such as non-stationarity adaptation, outlier detection, feature selection, and independent component analysis.
- Information and Media Technologies 編集運営会議の論文
著者
-
Takeuchi Ichiro
Nagoya Institute of Technology
-
Sugiyama Masashi
Tokyo Inst. Of Technol.
-
KANAMORI Takafumi
Nagoya University
-
Suzuki Taiji
The Univ. Of Tokyo
-
Hido Shohei
IBM Research
-
Sese Jun
Ochanomizu University
-
Wang Liwei
Peking University, Beijing
関連論文
- Statistical active learning for efficient value function approximation in reinforcement learning (ニューロコンピューティング)
- Lighting Condition Adaptation for Perceived Age Estimation
- Computationally Efficient Multi-task Learning with Least-squares Probabilistic Classifiers
- Differentially Aberrant Region Detection in Array CGH Data Based on Nearest Neighbor Classification Performance
- Differentially Aberrant Region Detection in Array CGH Data Based on Nearest Neighbor Classification Performance
- A Unified Framework of Density Ratio Estimation under Bregman Divergence
- Adaptive importance sampling with automatic model selection in value function approximation (ニューロコンピューティング)
- Improving Model-based Reinforcement Learning with Multitask Learning
- Improving Model-based Reinforcement Learning with Multitask Learning
- Least-Squares Conditional Density Estimation
- Direct Importance Estimation with a Mixture of Probabilistic Principal Component Analyzers
- カーネル密度比推定の統計的解析(学習問題の解析,テキスト・Webマイニング,一般)
- A Semi-Supervised Approach to Perceived Age Prediction from Face Images
- Conditional Density Estimation Based on Density Ratio Estimation
- Conditional Density Estimation Based on Density Ratio Estimation
- A density ratio approach to two-sample test (パターン認識・メディア理解)
- A density ratio approach to two-sample test (情報論的学習理論と機械学習)
- Theoretical Analysis of Density Ratio Estimation
- Multiclass Boosting Algorithms for Shrinkage Estimators of Class Probability(Artificial Intelligence and Cognitive Science)
- FOREWORD
- Superfast-Trainable Multi-Class Probabilistic Classifier by Least-Squares Posterior Fitting
- Direct Importance Estimation with Gaussian Mixture Models
- Improving the Accuracy of Least-Squares Probabilistic Classifiers
- Artist agent A[2]: stroke painterly rendering based on reinforcement learning (パターン認識・メディア理解)
- Artist agent A[2]: stroke painterly rendering based on reinforcement learning (情報論的学習理論と機械学習)
- Least-Squares Independence Test
- Multiscale Bagging and Its Applications
- Density Difference Estimation
- Winning the Kaggle Algorithmic Trading Challenge with the Composition of Many Models and Feature Engineering
- Artist Agent: A Reinforcement Learning Approach to Automatic Stroke Generation in Oriental Ink Painting
- Early stopping Heuristics in Pool-Based Incremental Active Learning for Least-Squares Probabilistic Classifier
- Computationally Efficient Multi-Label Classification by Least-Squares Probabilistic Classifiers
- Multi-Task Approach to Reinforcement Learning for Factored-State Markov Decision Problems
- Constrained Least-Squares Density-Difference Estimation
- A Density-ratio Framework for Statistical Data Processing
- Computationally Efficient Multi-task Learning with Least-squares Probabilistic Classifiers
- Model-Based Policy Gradients with Parameter-Based Exploration by Least-Squares Conditional Density Estimation
- A Density-ratio Framework for Statistical Data Processing
- FOREWORD
- On Kernel Parameter Selection in Hilbert-Schmidt Independence Criterion