Efficient Sample Reuse in Policy Gradients with Parameter-based Exploration (情報論的学習理論と機械学習)
スポンサーリンク
概要
- 論文の詳細を見る
- 2012-03-12
著者
関連論文
- Statistical active learning for efficient value function approximation in reinforcement learning (ニューロコンピューティング)
- Adaptive importance sampling with automatic model selection in value function approximation (ニューロコンピューティング)
- Improving Model-based Reinforcement Learning with Multitask Learning
- Improving Model-based Reinforcement Learning with Multitask Learning
- Least-Squares Conditional Density Estimation
- Information-maximization clustering: analytic solution and model selection (情報論的学習理論と機械学習)
- Conditional Density Estimation Based on Density Ratio Estimation
- Conditional Density Estimation Based on Density Ratio Estimation
- Least Absolute Policy Iteration-A Robust Approach to Value Function Approximation
- Analysis and improvement of policy gradient estimation (情報論的学習理論と機械学習)
- Artist agent A[2]: stroke painterly rendering based on reinforcement learning (パターン認識・メディア理解)
- Artist agent A[2]: stroke painterly rendering based on reinforcement learning (情報論的学習理論と機械学習)
- Efficient Sample Reuse in Policy Gradients with Parameter-based Exploration (情報論的学習理論と機械学習)
- Modified Newton Approach to Policy Search (情報論的学習理論と機械学習)
- Relative Density-Ratio Estimation for Robust Distribution Comparison (情報論的学習理論と機械学習)
- Artist Agent: A Reinforcement Learning Approach to Automatic Stroke Generation in Oriental Ink Painting
- Computationally Efficient Multi-Label Classification by Least-Squares Probabilistic Classifiers
- Multi-Task Approach to Reinforcement Learning for Factored-State Markov Decision Problems
- Efficient Sample Reuse in Policy Gradients with Parameter-based Exploration (情報論的学習理論と機械学習)