Feasibility Study for Recovering Waste Heat in the Steelmaking Industry Using a Chemical Recuperator
スポンサーリンク
概要
- 論文の詳細を見る
- 2004-02-15
著者
-
Akiyama Tomohiro
Center for Advanced Research of Energy Conversion Materials, Hokkaido University
-
Purwanto Hadi
Center For Advanced Research Of Energy Conversion Materials Hokkaido University
-
AKIYAMA Tomohiro
Department of Chemical Engineering, Osaka Prefecture University
-
Purwanto Hadi
Graduate School Of Engineering Tohoku University.
-
MIZUOCHI Toshio
JFE Steel Corporation
-
MARUOKA Nobuhiro
Department of Chemical Engineering, Graduate School of Engineering, Osaka Prefecture University
-
MIZUOCHI Toshio
Osaka Prefecture University
-
PURWANTO Hadi
Department of Chemical Engineering, Graduate School of Engineering, Osaka Prefecture University
-
Mizuochi T
Department Of Chemical Engineering Graduate School Of Engineering Osaka Prefecture University
-
Akiyama Tomohiro
Department Of Chemical Engineering Graduate School Of Engineering Osaka Prefecture University
-
Maruoka Nobuhiro
Graduate School Of Engineering Hokkaido University
-
Maruoka Nobuhiro
Department Of Chemical Engineering Graduate School Of Osaka Prefecture University
-
Maruoka N
Graduate School Of Engineering Hokkaido University
-
Akiyama T
Department Of Chemical Engineering Graduate School Of Engineering Osaka Prefecture University
関連論文
- Feasibility of an Advanced Waste Heat Transportation System Using High-temperature Phase Change Material (PCM)
- Development of PCM Reactor for Methane Steam Reforming
- Latent Heat of Amorphous Slags and Their Utilization as a High Temperature PCM
- Technology of Latent Heat Storage for High Temperature Application: A Review
- Mechanism of the Formation of Slag Particles by the Rotary Cylinder Atomization
- Development of a Rotary Cylinder Atomizing Method of Slag for the Production of Amorphous Slag Particles
- Technical Feasibility Study of Waste Heat Transportation System Using Phase Change Material from Industry to City
- Vickers hardness of β-SiAlON prepared by a combination of combustion synthesis and spark plasma sintering
- Thermoelectric Properties of Rare Earth-doped SrTiO3 Using Combination of Combustion Synthesis (CS) and Spark Plasma Sintering (SPS)
- Effects of Sintering Temperature on Thermoelectric Device of La-Doped Strontium Titanate in the Combination of Combustion Synthesis and Spark Plasma Sintering
- Thermoelectric Properties of Solution Combustion Synthesized Al-Doped ZnO
- Design of Cascaded Oxide Thermoelectric Generator
- Thermoelectric Properties of Combustion Synthesized and Spark Plasma Sintered Sr_R_xTiO_3 (R = Y, La, Sm, Gd, Dy, 0 < x ≦ 0.1)
- Thermoelectric Properties of Combustion-Synthesized Lanthanum-Doped Strontium Titanate
- Exergy Analysis of Hydriding Combustion Synthesis
- Pressure-Composition-Temperature Properties of Hydriding Combustion-Synthesized Mg_2NiH_4
- Operating Conditions for Hydriding Combustion Synthesis of Pure Mg_2NiH_4
- Combustion Synthesis of Doped Lanthanum Gallate as an Electrolyte for Solid Oxide Fuel Cells
- Recovery of Magnetite from Leached Laterite-residue by Magnetic Separation
- Recovery of Nickel from Selectively Reduced Laterite Ore by Sulphuric Acid Leaching
- Lowering of Grinding Energy and Enhancement of Agglomerate Strength by Dehydration of Indonesian Laterite Ore
- Reduction rate of cement bonded laterite briquette with CO-CO_2 gas
- Advanced Processing of Laterite Ore as Raw Material for Ironmaking -Reduction rate of cement-bonded laterite briquette with CO-CO_2 gas-
- Advanced Agglomeration of Laterite Iron Ore Including Combined Water
- Exergy, CO_2 and Economical Analyses of the Hydrogen Production Using Waste Heat from Molten Slag in the Steel Industry
- Prediction of Granulated Slag Properties Produced from Spinning Disk Atomizer by Mathematical Model
- Characteristics of Glass Beads from Molten Slag Produced by Rotary Cup Atomizer
- Feasibility Study for Recovering Waste Heat in the Steelmaking Industry Using a Chemical Recuperator
- Validation of a Blast Furnace Solid Flow Model Using Reliable 3-D Experimental Results
- Sophisticated Multi-phase Multi-flow Modeling of the Blast Furnace
- Thermodynamic Analysis of Thermochemical Recovery of High Temperature Wastes
- Effect of diluents on high purity β-SiAlONs by mechanically activated combustion synthesis
- Optimization of Sintering Temperature for Maximizing Dimensionless Figure of Merit of La-Doped Strontium Titanate Thermoelectric Material in the Combination of Combustion Synthesis with Post Spark Plasma Sintering
- Hydrogen Production from Waste Aluminum at Different Temperatures, with LCA
- Technical Feasibility Study of Waste Heat Transportation System Using Phase Change Material from Industry to City
- Latent Property of Defect-Controlled Metal Oxide : Nonstoichiometric Titanium Oxides as Prospective Material for High-Temperature Thermoelectric Conversion
- Synthesis of Zeolite-X from Waste Metals
- Feasibility of Rotary Cup Atomizer for Slag Granulation
- Hydriding Chemical Vapor Deposition of Metal Hydride Nano-Fibers
- Development of PCM for Recovering High Temperature Waste Heat and Utilization for Producing Hydrogen by Reforming Reaction of Methane
- Microstructure Evolution of Iron Carbide during Reaction with Steam at Elevated Temperatures
- Materialographic Investigation on the Mechanism of Hydrogen Production through the Reaction between Iron Carbide and Steam at a Temperature of 673K
- Reduction of Iron Oxides by Nano-Sized Graphite Particles Observed in Pre-Oxidized Iron Carbide at Temperatures around 873K
- Exergy Analysis of Steel Production Processes
- Cold Experiments of Rotary Vaned-disks and Wheels for Slag Atomization
- Latent Heat of Amorphous Slags and Their Utilization as a High Temperature PCM
- Mechanism of the Formation of Slag Particles by the Rotary Cylinder Atomization
- Development of a Rotary Cylinder Atomizing Method of Slag for the Production of Amorphous Slag Particles
- Exergy Analysis of Methane Steam Reformer Utilizing Steelmaking Waste Heat
- 結晶水を含有するラテライトのセメント結合ブリケットの物理的特性
- Effects of Slag Compositions on the Rate of Methane-Steam Reaction
- Observation of Molten Slag Surface under Gas Impingement by X-ray Computed Tomography
- Theoretical Design of Cup Atomizer for Heat Recovery of Molten Slag by Chemical Quench
- Effect of Slag Basicity on the Rate of Methane-steam Reaction
- Methodology to Evaluate Reduction Limit of Carbon Dioxide Emission and Minimum Exergy Consumption for Ironmaking
- Glassification and heat recovery system for molten slag
- Decomposition of Biogas into Hydrogen on Hot Slag
- Coproduction of Iron and Hydrogen from Iron Carbide
- Thermal Stress Analysis of PCM Encapsulation for Heat Recovery of High Temperature Waste Heat
- Combustion Synthesis of Aluminium Nitride From Dross