Improved Deposition Efficiency of Cold-Sprayed CoNiCrAlY with Pure Ni Coatings and Its High-Temperature Oxidation Behavior after Pre-Treatment in Low Oxygen Partial Pressure
スポンサーリンク
概要
- 論文の詳細を見る
In this study, the effect of nickel powder addition to cold sprayed CoNiCrAlY coatings was investigated. In order to reduce production cost of cold spray and improve the deposition efficiency of CoNiCrAlY coatings, pure nickel (Ni) powder was added to the CoNiCrAlY and the resulting powder was cold sprayed using nitrogen (N2) as the working gas. Deposition efficiency was increased as compared with a CoNiCrAlY coating without Ni under the same spray conditions. The microstructural characterization and phase analysis of the feedstock powders and the as-sprayed coatings were carried out by scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDX). In the SEM images, the particle boundaries between Ni and CoNiCrAlY in the as-sprayed coating were clearly observed. Also, a significant amount of the CoNiCrAlY powder was encapsulated in the coating. To confirm the oxidation behavior of CoNiCrAlY with the Ni coating, heat treatment was carried out at 1000°C in ambient air. After heating, most of the boundaries between Ni and CoNiCrAlY disappeared and many pores were generally observed in the coating by interdiffusion of the powders. Over time, most of these pores disappeared by interdiffusion; thus, the number of pores decreased and the hardness of the coatings increased. In the EDX analysis of the coatings, movement of elements was definitely confirmed. Furthermore, the elements of thermally grown oxide (TGO) were analyzed to confirm the effect of CoNiCrAlY with Ni coatings, and a large quantity of NiO was observed on the coating layer. Because NiO can lead to faster delamination of thermal barrier coatings (TBCs), pretreatment in low oxygen partial pressure was carried out to prevent the formation of excess NiO. This pretreatment successfully prevented the growth of NiO TGO.
著者
-
Ogawa Kazuhiro
Fracture And Reliability Research Institute Tohoku University
-
Lee Kang-Il
Fracture and Reliability Research Institute, Tohoku University
関連論文
- Collaborative Research on Adhesion Strength of Thermal Barrier Coatings in JSMS
- Quantitative NDE of Surface Cracks in Ceramic Materials by means of a High-Frequency Electromagnetic Wave
- Mechanistic Understanding for Degraded Thermal Barrier Coatings
- Powder Jet Deposition of Ceramic Films(M^4 processes and micro-manufacturing for science)
- Thermal Aging Embrittlement of Service-Exposed Udimet 520 Gas Turbine Blade(Student Poster Session)
- Theoretical Modeling and Experimental Study of Thermal Barrier Coatings
- B402 CHARACTERIZATION OF FRACTURE MECHANICS OF HIGH SPEED TRAIN WHEELSETS DEPENDING ON AGING EFFECTS AND ON THE LOCATION EXAMINED
- PREFACE
- Nondestructive Evaluation of High-Temperature Oxidation Behaviour in Thermal Barrier Coatings(High Temperature Materials)
- High Temperature Oxidation Behavior of the Interface Between Thermal Barrier Coatings and MCrAlY Bond Coatings(High Temperature Materials)
- Mechanical and High Temperature Oxidation Properties of Cold Sprayed CoNiCrAlY Coatings for Thermal Barrier Coating
- Numerical Analysis of Interfacial Bonding of Al-Si Particle and Mild Steel Substrate by Cold Spray Technique Using the SPH Method
- Improved Deposition Efficiency of Cold-Sprayed CoNiCrAlY with Pure Ni Coatings and Its High-Temperature Oxidation Behavior after Pre-Treatment in Low Oxygen Partial Pressure
- Investigation of Surface Activation Bonding for Elucidation of Deposition Mechanism of Cold Spraying