The SMARTTM Process for Directed Block Co-Polymer Self-Assembly
スポンサーリンク
概要
- 論文の詳細を見る
A new process for directed block co-polymer self-assembly (DSA),AZ(R) SMARTTM, for high resolution line and space patterning was introduced. The SMART process started with photoresist trench patterns generated through common photolithographic processes on top of a thin crosslinked neutral layer. A reactive ion etching (RIE) process removed the neutral layer at bottom of the resist trenches and followed by a resist stripping step which completely removed the resist material and uncovered the neutral surface protected by the resist film during etching step. DSA performances of the resultant SMART chemical pre-patterns without or with extra pinning material brushing step were compared. Results indicated that pinning material enhanced chemical pre-pattern directing power for DSA performance. The chemical pre-pattern without pinning material provided well aligned DSA performance for some specific pre-pattern structure and DSA multiplication factor, but it lacked general performance stability. On the other hand, process with added pinning material was demonstrated with stable performance for variable pre-pattern pitches with different DSA multiplication factors. SMART DSA pattern profile and its pattern etching transfer into hard masks were investigated.
- The Society of Photopolymer Science and Technology (SPST)の論文
The Society of Photopolymer Science and Technology (SPST) | 論文
- Influence of Solvent Vapor Atmospheres to the Self-assembly of Poly(styrene-b-dimethylsiloxane)
- Conventional Measurement Method of Film Resistance of Plasma-Polymerized Thin Films Using a High-Resistance Meter
- Synthesis and Optical Properties of Carbazole-Containing Donor-Acceptor Type Conjugated Polymers
- Novolak Resist Removal Using Laser (266/532nm)
- Evaluation of Fluorinated Diamond Like Carbon as Antisticking Layer by Scanning Probe Microscopy