Directed Self Assembly Material Development for Fine Patterning and Pattern Repair
スポンサーリンク
概要
- 論文の詳細を見る
The Directed Self-Assembly (DSA) method is becoming a key complementary technology for enabling lithographic pattern feature shrinkage. Recent DSA technology has developed remarkable improvements in many aspects of materials and process. Polystyrene- b-polymethylmethacrylate (PS-b-PMMA) block copolymer (BCP) is a typical material used in DSA, but more advanced materials are required for achieving patterning less than 10 nm in size. High-χ block copolymers are being researched as next generation PS-b-PMMA material successors. Polymers with high-χ produce smaller pattern sizes than PS-b-PMMA. However, doing DSA with these high-χ materials requires a special method to separate one phase of BCP such as phase separation in solvent. We have done further research to improve high-χ materials to enable better DSA technology. Here we report 8.4 nm half-pitch line patterns were formed with our high-χ block co-polymer, annealing under air. DSA is a candidate for next generation lithography. However, DSA materials are not used alone. DSA materials are always used with guide pattern to "direct" self assembly materials. Currently ArF resist is well studied as guide pattern. ArF resist is extended to use further generation, but the required resolution level is already severe for 193nm patterning. Employment of blend DSA could improve the ArF pattern profile.
- The Society of Photopolymer Science and Technology (SPST)の論文
The Society of Photopolymer Science and Technology (SPST) | 論文
- Influence of Solvent Vapor Atmospheres to the Self-assembly of Poly(styrene-b-dimethylsiloxane)
- Conventional Measurement Method of Film Resistance of Plasma-Polymerized Thin Films Using a High-Resistance Meter
- Synthesis and Optical Properties of Carbazole-Containing Donor-Acceptor Type Conjugated Polymers
- Novolak Resist Removal Using Laser (266/532nm)
- Evaluation of Fluorinated Diamond Like Carbon as Antisticking Layer by Scanning Probe Microscopy