Kernel-Based On-Line Object Tracking Combining both Local Description and Global Representation
スポンサーリンク
概要
- 論文の詳細を見る
This paper proposes a novel method for object tracking by combining local feature and global template-based methods. The proposed algorithm consists of two stages from coarse to fine. The first stage applies on-line classifiers to match the corresponding keypoints between the input frame and the reference frame. Thus a rough motion parameter can be estimated using RANSAC. The second stage employs kernel-based global representation in successive frames to refine the motion parameter. In addition, we use the kernel weight obtained during the second stage to guide the on-line learning process of the keypoints' description. Experimental results demonstrate the effectiveness of the proposed technique.
著者
-
Lin Xinggang
Department Of Electronic Engineering Tsinghua University
-
MIAO Quan
Department of Electronic Engineering, Tsinghua University
-
Miao Quan
Department Of Electronic Engineering Tsinghua University
-
Wang Guijin
Department Of Electronic Engineering Tsinghua University
関連論文
- Online HOG Method in Pedestrian Tracking
- Robust Object Tracking via Combining Observation Models
- A Framework of Real Time Hand Gesture Vision Based Human-Computer Interaction
- Measuring Particles in Joint Feature-Spatial Space
- Kernel Based Image Registration Incorporating with Both Feature and Intensity Matching
- Real-Time Human Detection Using Hierarchical HOG Matrices
- DSP-Based Parallel Implementation of Speeded-Up Robust Features
- Non-rigid Object Tracking as Salient Region Segmentation and Association
- Partial Derivative Guidance for Weak Classifier Mining in Pedestrian Detection
- Drastic Anomaly Detection in Video Using Motion Direction Statistics
- High-Accuracy Sub-Pixel Registration for Noisy Images Based on Phase Correlation
- Stereo Matching Using Local Plane Fitting in Confidence-Based Support Window
- Implementation of Scale and Rotation Invariant On-Line Object Tracking Based on CUDA
- A Real-Time Human Detection System for Video
- An Interleaving Updating Framework of Disparity and Confidence Map for Stereo Matching
- Kernel-Based On-Line Object Tracking Combining both Local Description and Global Representation