A Framework of Real Time Hand Gesture Vision Based Human-Computer Interaction
スポンサーリンク
概要
- 論文の詳細を見る
This paper presents a robust framework of human-computer interaction from the hand gesture vision in the presence of realistic and challenging scenarios. To this end, several novel components are proposed. A hybrid approach is first proposed to automatically infer the beginning position of hand gestures of interest via jointly optimizing the regions given by an offline skin model trained from Gaussian mixture models and a specific hand gesture classifier trained from the Adaboost technique. To consistently track the hand in the context of using kernel based tracking, a semi-supervised feature selection strategy is further presented to choose the feature subspaces which appropriately represent the properties of offline hand skin cues and online foreground-background-classification cues. Taking the histogram of oriented gradients as the descriptor to represent hand gestures, a soft-decision approach is finally proposed for recognizing static hand gestures at the locations where severe ambiguity occurs and hidden Markov model based dynamic gestures are employed for interaction. Experiments on various real video sequences show the superior performance of the proposed components. In addition, the whole framework is applicable to real-time applications on general computing platforms.
- 2011-03-01
著者
-
WANG Guijin
Department of Electronic Engineering, Tsinghua University
-
Wang Guijin
Department Of Electronics Engineering Tsinghua University
-
Lin Xinggang
Department Of Electronic Engineering Tsinghua University
-
Lin Xinggang
Department Of Electronics Engineering Tsinghua University
-
Sha Liang
Department Of Electronics Engineering Tsinghua University
-
WANG Kongqiao
Nokia Research Center
-
Wang Guijin
Department Of Electronic Engineering Tsinghua University
関連論文
- Online HOG Method in Pedestrian Tracking
- Robust Object Tracking via Combining Observation Models
- A Framework of Real Time Hand Gesture Vision Based Human-Computer Interaction
- Measuring Particles in Joint Feature-Spatial Space
- Kernel Based Image Registration Incorporating with Both Feature and Intensity Matching
- Real-Time Human Detection Using Hierarchical HOG Matrices
- DSP-Based Parallel Implementation of Speeded-Up Robust Features
- Non-rigid Object Tracking as Salient Region Segmentation and Association
- Partial Derivative Guidance for Weak Classifier Mining in Pedestrian Detection
- Drastic Anomaly Detection in Video Using Motion Direction Statistics
- High-Accuracy Sub-Pixel Registration for Noisy Images Based on Phase Correlation
- Stereo Matching Using Local Plane Fitting in Confidence-Based Support Window
- Implementation of Scale and Rotation Invariant On-Line Object Tracking Based on CUDA
- A Real-Time Human Detection System for Video
- An Interleaving Updating Framework of Disparity and Confidence Map for Stereo Matching
- Kernel-Based On-Line Object Tracking Combining both Local Description and Global Representation