Phase equilibria in the Ln2O3-V2O3-V2O5 (Ln=Pr,Tb, and Y) systems at 1200.DEG.C.
スポンサーリンク
概要
- 論文の詳細を見る
The phase equilibria in the systems, Pr<SUB>2</SUB>O<SUB>3</SUB>–V<SUB>2</SUB>O<SUB>3</SUB>–V<SUB>2</SUB>O<SUB>5</SUB>, Tb<SUB>2</SUB>O<SUB>3</SUB>–V<SUB>2</SUB>O<SUB>3</SUB>–V<SUB>2</SUB>O<SUB>5</SUB>, and Y<SUB>2</SUB>O<SUB>3</SUB>–V<SUB>2</SUB>O<SUB>3</SUB>–V<SUB>2</SUB>O<SUB>5</SUB>, were established at 1200 °C by changing the oxygen partial pressure from −1.20 (in the CO<SUB>2</SUB>) to 7.50 in −log (<I>P</I><SUB>O<SUB>2</SUB></SUB>/Pa) for Pr<SUB>2</SUB>O<SUB>3</SUB> and Tb<SUB>2</SUB>O<SUB>3</SUB> systems, and from −4.32 (in the air) to 7.50 in −log (<I>P</I><SUB>O<SUB>2</SUB></SUB>/Pa) for Y<SUB>2</SUB>O<SUB>3</SUB> system. In the first system 0.81Pr<SUB>2</SUB>O<SUB>3</SUB>·0.19V<SUB>2</SUB>O<SUB>5</SUB>(A) and 3Pr<SUB>2</SUB>O<SUB>3</SUB>·V<SUB>2</SUB>O<SUB>5</SUB>(B), in the second 0.81Tb<SUB>2</SUB>O<SUB>3</SUB>·0.19V<SUB>2</SUB>O<SUB>5</SUB>(A′), and in the last one 4Y<SUB>2</SUB>O<SUB>3</SUB>·V<SUB>2</SUB>O<SUB>5</SUB>(A″) were stable in addition to Ln<SUB>2</SUB>O<SUB>3</SUB>, LnVO<SUB>4</SUB>, LnVO<SUB>3</SUB>, V<I><SUB>n</SUB></I>O<SUB>2<I>n</I>−1</SUB> (<I>n</I>=2–7, and Ln means Pr, Tb, and Y), and VO<SUB>2</SUB> under the present experimental conditions. On the basis of the established phase diagrams, the standard Gibbs energies (Δ<I>G</I>°) of reactions appeared in the systems were calculated. Compounds A, B, PrVO<SUB>3</SUB>, A′, A″, and LnVO<SUB>4</SUB> have nonstoichiometric compositions. Δ<I>G</I>° values for the reactions and crystallographic values of the compounds were represented as a function of the ionic radius of lanthanoid (including Y) elements.
- 公益社団法人 日本化学会の論文
著者
-
KATSURA Takashi
Department of Chemistry
-
Kitayama Kenzo
Department Of Applied Chemistry And Biotechnology
関連論文
- Magnetic and Mossbauer Studies of a New Compound YFe_2O_4
- PRECONCENTRATION OF TRACE AMOUNT OF CADMIUM IN WATER BY "FERRITE PROCESS"
- Phase Equilibrium in the Y-Fe-O System at 1000℃
- Thermogravimetric Study of the Ln_2O_3-Co-Co_2O_3 System Ln=Sm at 1000℃
- Phase equilibria in the Ln2O3-V2O3-V2O5 (Ln=Eu and Yb) systems at 1200.DEG.C.
- Phase equilibria in the La2O3-V2O3-V2O5 system at 1200.DEG.C.
- The formation of the Cd-bearing ferrite by the air oxidation of an aqueous suspension.
- Aluminium-bearing ferrite formation from .GAMMA.-FeOOH in an aqueous suspension.
- Formation of Zn-bearing ferrite by air oxidation of aqueous suspension.
- The transformation of .GAMMA.-FeO(OH) to Fe3O4 and green rust II in an aqueous solution.
- Thermochemical Properties of Lanthanoid-Iron-Perovskite at High Temperatures
- Phase Equilibria in the V2O3–VO2 System at High Temperatures
- The Phase Equilibria in the FeO-Fe2O3-V2O3 System at 1500°K
- Phase equilibria in the Gd2O3-V2O3-V2O5system at 1200.DEG.C.
- Phase equilibria in the Ln2O3-V2O3-V2O5 (Ln=Pr,Tb, and Y) systems at 1200.DEG.C.
- Phase equilibria in Sm2O3-V2O3-V2O5 system at 1200.DEG.C.
- The formation of Mg-bearing ferrite by the air oxidation of aqueous suspensions.
- The Activity of Dilute Sodium in Liquid Au-Na Alloy
- The Thermodynamic Properties of the Nonstoichiometric Ceric Oxide at Temperatures from 900 to 1300°C
- The Standard Free Energy of the Formation of LaFeO3 at 1204°C