腎血流量の調節
スポンサーリンク
概要
- 論文の詳細を見る
Control mechanisms for total renal blood flow (RBF) or regional blood flow were reviewed. Physiological and experimental conditions will usually cause simultaneous activation of several control mechanisms. The many interactions and secondary effects through release of intrarenal hormones, i.e., the renin-angiotensin system, prostaglandin and the kallikrein-kinin system, complicate the picture even more; but they also make it easy, and tempting, to construct various feedback control systems for renal hemodynamics. 1. There is no functional evidence for renal vasodilator nerves, while both pre- and postglomerular resistance vessels are supplied by adrenergic constrictor nerves. Nervous vasoconstrictor tone is absent or low under basal conditions, but may be activated by a number of afferent stimuli. 2. Intrarenal distributions of adrenergic alpha and beta-receptor are homogeneous and beta-receptor may be selectively located in the afferent arterioles. On the other hand, the distribution of dopamine and acetylcholine receptor is not uniform, and they are distributed more in the inner cortex than in the outer cortex. 3. The renal arterioles are highly sensitive to the vasconstrictor action of angiotensin II and to the vasodilator action of prostaglandin E<SUB>2</SUB> and bradykinin. Under basal conditions, there seems to be no resting “angiotensin vasoconstrictor tone” and “bradykinin vasodilator tone”, whereas salt depletion and certain types of renal hypertension may be associated with sustained renal vasoconstriction caused by angiotensin II. 4. Autoregulation tends to keep RBF and GFR constant at varying arterial pressure. There is no direct evidence for a metabolic autoregulation of RBF and for a contribution of intrarenal humoral factors for autoregulation. Thus, in spite of only indirect evidence, a Bayliss mechanism is still an attractive hypothesis, and would in fact seems to satisfy more experimental observations than any other mechanism.
- 社団法人 日本薬理学会の論文
著者
関連論文
- 求心性腎神経を介したバソプレッシン分泌調節 : プロスタグランジン依存性の検討
- 心筋酸化ストレス : アンジオテンシン受容体とβアドレナリン受容体の相互作用
- P192 不全心における脱共役蛋白(UCP)の発現
- 0460 大動脈弁閉鎖不全モデルラットでの左室リモデリングのアンジオテンシン変換酵素阻害薬による抑制過程
- ブラディキニン--ACE阻害薬とアンジオテンシン2拮抗薬の作用点の違いから (ACE阻害薬--アンジオテンシン変換酵素阻害薬をめぐる最近の話題) -- (その他)
- レニンの分泌調節機構
- 高血圧研究の進歩(循環器学1999年の進歩)
- 腎循環のパラクリン調節
- 腎臓細動脈の単離実験方法
- Adenosine3',5'-monophosphateおよびその関連物質の薬理学的研究-1-Adenosine 3',5-monophosphateおよびN6-2'-o-dibutyryl 3',5'-adenosine monophosphateの腎機能におよぼす影響について
- ACEIとAIIAの長所と短所
- 高血圧研究の新展開-分子生物学から創薬まで-
- 3A20 Effects of Adenosine on Regional Hemodynamics in Conscious Rats
- 腎血流量の調節
- 腎臓細動脈の単離実験方法
- Adenosine 3, 5-monophosphateおよびその関連物質の薬理学的研究(第一報) : Adenosine 3, 5-monophosphateおよびN6-2-o-dibutyryl 3, 5-adenosine monophosphateの腎機能におよぼす影響について
- レニン・アンジオテンシン系の遺伝子発現