Void Fraction in a Four by Four Rod Bundle under a Stagnant Condition
スポンサーリンク
概要
- 論文の詳細を見る
In the case of a hypothetical failure of a residual heat removal (RHR) systems under mid-loop operation, vapor generated in a reactor core forms two-phase flow in a stagnant liquid and rises the water level in the core. The vapor flows into a steam generator through a hot leg, and condenses in the steam generator. Since the flow rate of vapor from the reactor core to the hot leg depends on the water level and the void fraction α in the reactor core, the reliable analysis of the RHR failure cannot be carried out without accurately estimating the void fraction in the reactor core. Although a number of studies on void fractions in two-phase flows in rod bundles have been carried out, there are few experimental data on void fractions in rod bundles under the stagnant condition. Void fractions in four by four rod bundles under the stagnant condition were measured for a wide range of gas volume fluxes to examine the validity of available void correlations. Flow patterns were visualized by using a high-speed video camera to examine the effects of flow pattern on the void fraction. As a result, the following conclusions were obtained: (1) Dependence of the void fraction on the gas volume flux JG changed at JG ≅ 1.5 m/s due to the flow pattern transition. (2) Murases correlation agreed well with the void fraction in the two kinds of rod bundles having different dimensions under the stagnant condition.
著者
-
KINOSHITA Ikuo
Institute of Material Science, University of Tsukuba
-
Murase Michio
Institute Of Nuclear Safety System Inc.
-
HOSOKAWA Shigeo
Graduate School of Engineering, Kobe University
-
Murase Michio
Institute Of Nuclear Safety System
-
Tomiyama Akio
Graduate School Of Engineering Kobe University
-
Hosokawa Shigeo
Graduate School Of Engineering Kobe Univ.
-
KAMEI Akihiro
Graduate School of Engineering, Kobe University
-
KINOSHITA Ikuo
Institute of Nuclear Safety System, Inc.
関連論文
- Countercurrent Gas-Liquid Flow in a PWR Hot Leg under Reflux Cooling (II) : Numerical Simulation of 1/15-Scale Air-Water Tests
- Countercurrent Gas-Liquid Flow in a PWR Hot Leg under Reflux Cooling (I) : Air-Water Tests for 1/15-Scale Model of a PWR Hot Leg
- Optical Properties of Poly(2,5-dialkoxy-p-phenylenebutadiynylene)
- Effects of Nozzle Geometry on Cavitation in Nozzles of Pressure Atomizers
- Ligament Formation Induced by Cavitation in a Cylindrical Nozzle
- Dimensionless Index for Cavitation in Nozzles of Various Geometries
- A Numerical Method for Two-Phase Flow Based on a Phase-Field Model
- PIV Measurement of Pressure Distributions about Single Bubbles
- Simulation of Bubble Motion under Gravity by Lattice Boltzmann Method
- Numerical Simulation of Countercurrent Gas-Liquid Flow in a PWR Hot Leg under Reflux Cooling
- Void Fraction in a Four by Four Rod Bundle under a Stagnant Condition
- Analysis of Noncondensable Gas Recirculation Flow in Steam Generator U-Tubes during Reflux Condensation Using RELAP5
- Experimental Study on Transient Boiling Heat Transfer in an Annulus with a Narrow Gap
- ICONE11-36177 EXPERIMENTAL STUDY ON TRANSIENT BOILING HEAT TRANSFER IN AN ANNULUS WITH A NARROW GAP
- Reflux Condensation Heat Transfer of Steam-Air Mixture under Turbulent Flow Conditions in a Vertical Tube
- Evaluation of Reflux Condensation Heat Transfer of Steam-Air Mixtures under Gas-Liquid Countercurrent Flow in a Vertical Tube
- Synthesis and Characterization of a Novel Linear Conjugated Polymer, Poly(2,5 - didodecyloxy - 1,4 - phenyleneoctatetraynylene)
- Numerical Simulation of Countercurrent Gas-Liquid Flow in a PWR Hot Leg under Reflux Cooling
- Shapes and Rising Velocities of Single Bubbles rising through an Inner Subchannel
- H205 EVALUATION OF RELATIVE VELOCITY BETWEEN SINGLE BUBBLES AND LIQUID IN HORIZONTAL TURBULENT PIPE FLOW(Bubble behavior)
- Two-phase Flow Patterns in a Four by Four Rod Bundle
- Cavitation in a Two-Dimensional Nozzle and Liquid Jet Atomization : LDV Measurement of Liquid Velocity in a Nozzle
- Modeling and Validation of In-Vessel Debris Cooling during LWR Severe Accident
- Immersed Boundary-Finite Difference Lattice Boltzmann Method for Liquid-Solid Two-Phase Flows
- Effects of Liquid Properties on CCFL in a Scaled-Down Model of a PWR Hot Leg
- Correlation for countercurrent flow limitation in a PWR hot leg
- Detection of Cavitation States with Microphone Placed Outside Pipe Components
- Influence of Local Flow Field on Flow Accelerated Corrosion Downstream from an Orifice
- Liquid Mixing in a Bubble Column
- Numerical Simulation of Water Temperature in a Spent Fuel Pit during the Shutdown of Its Cooling Systems
- Evaluation of Heat Loss and Water Temperature in a Spent Fuel Pit
- One-Region Model Predicting Water Temperature and Level in a Spent Fuel Pit during Loss of All AC Power Supplies
- Correlation between Flow Accelerated Corrosion and Wall Shear Stress Downstream from an Orifice
- Volume Tracking Simulation of Bubble Motion with Low Spatial Resolution
- Two-Phase Swirling Flow in a Gas-Liquid Separator