A Fast Ray-Tracing Using Bounding Spheres and Frustum Rays for Dynamic Scene Rendering
スポンサーリンク
概要
- 論文の詳細を見る
Ray tracing is one of the most popular techniques for generating photo-realistic images. Extensive research and development work has made interactive static scene rendering realistic. This paper deals with interactive dynamic scene rendering in which not only the eye point but also the objects in the scene change their 3D locations every frame. In order to realize interactive dynamic scene rendering, RTRPS (Ray Tracing based on Ray Plane and Bounding Sphere), which utilizes the coherency in rays, objects, and grouped-rays, is introduced. RTRPS uses bounding spheres as the spatial data structure which utilizes the coherency in objects. By using bounding spheres, RTRPS can ignore the rotation of moving objects within a sphere, and shorten the update time between frames. RTRPS utilizes the coherency in rays by merging rays into a ray-plane, assuming that the secondary rays and shadow rays are shot through an aligned grid. Since a pair of ray-planes shares an original ray, the intersection for the ray can be completed using the coherency in the ray-planes. Because of the three kinds of coherency, RTRPS can significantly reduce the number of intersection tests for ray tracing. Further acceleration techniques for ray-plane-sphere and ray-triangle intersection are also presented. A parallel projection technique converts a 3D vector inner product operation into a 2D operation and reduces the number of floating point operations. Techniques based on frustum culling and binary-tree structured ray-planes optimize the order of intersection tests between ray-planes and a sphere, resulting in 50% to 90% reduction of intersection tests. Two ray-triangle intersection techniques are also introduced, which are effective when a large number of rays are packed into a ray-plane. Our performance evaluations indicate that RTRPS gives 13 to 392 times speed up in comparison with a ray tracing algorithm without organized rays and spheres. We found out that RTRPS also provides competitive performance even if only primary rays are used.
著者
-
SUZUKI Ken-ichi
Tohoku Institute of Technology
-
KAERIYAMA Yoshiyuki
Nikon Corporation
-
KOMATSU Kazuhiko
Cyberscience Center, Tohoku University
-
EGAWA Ryusuke
Cyberscience Center, Tohoku University
-
OHBA Nobuyuki
IBM Research, Tokyo Research Laboratory, IBM Japan Ltd.
-
KOBAYASHI Hiroaki
Cyberscience Center, Tohoku University
関連論文
- Characteristics of an on-chip cache an NEC SX vector architecture
- A Fast Ray-Tracing Using Bounding Spheres and Frustum Rays for Dynamic Scene Rendering
- A Self-Organized Overlay Network Management Mechanism for Heterogeneous Environments
- An Out-of-order Vector Processing Mechanism for Multimedia Applications
- C-024 An Auction based Resource Allocation Considering Multifaceted Utilities in a Peer to Peer Environment
- RNAi suppression of the anthocyanidin synthase gene in Torenia hybrida yields white flowers with higher frequency and better stability than antisense and sense suppression
- Molecular characterization of the flavonoid biosynthesis of Verbena hybrida and the functional analysis of verbena and Clitoria ternatea F3'5'H genes in transgenic verbena
- MOLECULAR BREEDING OF FLOWER COLOR OF Torenia fourieri
- A Fast Ray-Tracing Using Bounding Spheres and Frustum Rays for Dynamic Scene Rendering
- LI-004 Accelerating Moller Intersection Algorithm Using Ray Packets
- Power Estimation of Partitioned Register Files in a Clustered Architecture with Performance Evaluation
- Generation of pink flower varieties from blue Torenia hybrida by redirecting the flavonoid biosynthetic pathway from delphinidin to pelargonidin
- Hardware Design Verification Using Signal Transitions and Transactions(Selected Papers from the 18th Workshop on Circuits and Systems in Karuizawa)
- A Network Clustering Algorithm for Sybil-Attack Resisting
- A Capacity-Aware Thread Scheduling Method Combined with Cache Partitioning to Reduce Inter-Thread Cache Conflicts