特異値計算アルゴリズムの基礎理論 : dqds法の収束性解析
スポンサーリンク
概要
- 論文の詳細を見る
Matrix singular values play an important role in many applications. Accordingly, numerical methods for computing singular values are of great importance in practice. In 1994, Fernando and Parlett discovered an efficient algorithm, which is now called the differential quotient difference with shifts (dqds) algorithm. The dqds algorithm has received majority support due to its accuracy, speed, and numerical stability, and is implemented as DLASQ in LAPACK. This paper is concerned with convergence theorems of the dqds algorithm for singular values. Specifically, we discuss the global convergence theorem given by the present author and survey a variety of theorems on convergence rate of the dqds algorithm.
- 2012-06-26
著者
関連論文
- A survey on convergence theorems of the dqds algorithm for computing singular values
- 応用数理セミナー(学術会合報告)
- 特異値計算アルゴリズムdqds法の収束定理 (計算科学の基盤技術としての高速アルゴリズムとその周辺)
- 特異値計算アルゴリズムdqds法の理論保証付き超2次収束シフト戦略(理論)
- On Convergence of the dqds and mdLVs Algorithms for Computing Matrix Singular Values(Mathematical Sciences for Large Scale Numerical Simulations)
- 特異値計算のためのdqds法とmdLVs法の収束性について(理論)
- SIAM CSE09(Conference Reports)
- Rigorous Proof of Cubic Convergence for the dqds Algorithm for Singular Values
- A note on the dqds algorithm with Rutishauser's shift for singular values
- 特異値計算アルゴリズムの基礎理論 : dqds法の収束性解析