Predicting Protein-RNA Residue-base Contacts Using Two-dimensional Conditional Random Field
スポンサーリンク
概要
- 論文の詳細を見る
It is important to understand interactions between proteins and RNAs for uncovering networks and functions of molecules in cellular systems. Many researchers have studied for analyzing and investigating interactions between protein residues and RNA bases. For interactions between protein residues, it is supported that residues at interacting sites have co-evolved with the corresponding residues in the partner protein to keep the interactions between the proteins. In our previous work, on the basis of this idea, we calculated mutual information (MI) between residues from multiple sequence alignments of homologous proteins for identifying interacting pairs of residues in interacting proteins, and combined it with the discriminative random field (DRF), which is useful to extract some characteristic regions from an image in the field of image processing, and is a special type of conditional random fields (CRFs). In a similar way, in this technical report, we make use of mutual information for predicting interactions between protein residues and RNA bases. Furthermore, we introduce labels of amino acids and bases as features of a simple two-dimensional CRF instead of DRF. To evaluate our method, we perform computational experiments for several interactions between Pfam domains and Rfam entries. The results suggest that the CRF model with MI and labels is more useful than the CRF model with only MI.
- 2012-08-02
著者
-
Tatsuya Akutsu
Bioinformatics Center, Institute for Chemical Research, Kyoto University
-
Morihiro Hayashida
Bioinformatics Center Institute For Chemical Research Kyoto University
-
Jiangning Song
Bioinformatics Center Institute For Chemical Research Kyoto University | Department Of Biochemistry
-
Tatsuya Akutsu
Bioinformatics Center Institute For Chemical Research Kyoto University
-
Jiangning Song
Department Of Biochemistry And Molecular Biology Monash University Australia|tianjin Institute Of In
-
Tatsuya Akutsu
Bioinformatics Center Institute For Chemical Research Kyoto Univerty
-
Mayumi Kamada
Bioinformatics Center Institute For Chemical Research Kyoto University
関連論文
- Prediction of Protein Folding Rates from Structural Topology and Complex Network Properties
- Prediction of Protein Folding Rates from Structural Topology and Complex Network Properties
- RNA-RNA Interaction Prediction Using Integer Programming with Threshold Cut
- A Quadsection Algorithm for Grammar-Based Image Compression
- Analyses and Algorithms for Predecessor and Control Problems for Boolean Networks of Bounded Indegree
- Conditional Random Field Approach to Prediction of Protein-protein Interactions Using Domain Information
- Integer Programming and Dynamic Programming-based Methods of Optimizing Control Policy in Probabilistic Boolean Networks with Hard Constraints
- An Improved Clique-Based Method for Computing Edit Distance between Rooted Unordered Trees
- Prediction of protein residue contacts using discriminative random field
- Prediction of protein residue contacts using discriminative random field
- Efficient Computation of Impact Degrees for Multiple Reactions in Metabolic Networks with Cycles
- Prediction of RNA Secondary Structures with Binding Sites Using Dynamic Programming Algorithm
- Message from the Editor-in-Chief
- Message from the Editor-in-Chief
- Message from the Editor-in-Chief
- Protein complex prediction via improved verification methods using constrained domain-domain matching
- Predicting Protein-RNA Residue-base Contacts Using Two-dimensional Conditional Random Field
- Finding Conserved Regions in Protein Structures Using Support Vector Machines and Structure Alignment
- Inferring Strengths of Protein-Protein Interactions Using Support Vector Regression
- Evaluating Effectiveness of Accessibility to Infer RNA-RNA Interactions
- Survival Analysis by Penalized Regression and Matrix Factorization
- A Dominating Set Approach to Structural Controllability of Unidirectional Bipartite Networks
- Prediction of Heterodimeric Protein Complexes from Weighted Protein-Protein Interaction Networks Using Novel Features and Kernel Functions
- Prediction of Heterodimeric Protein Complexes from Weighted Protein-Protein Interaction Networks Using Novel Features and Kernel Functions
- Breadth-first Search Approach to Enumeration of Tree-like Chemical Compounds
- Breadth-first Search Approach to Enumeration of Tree-like Chemical Compounds
- Algorithms for Finding a Largest Common Subtree of Bounded Degree
- Parallelization of Enumerating Tree-like Chemical Compounds by Breadth-first Search Order
- Prediction of Heterotrimeric Protein Complexes by Two-phase Learning Using Neighboring Kernels
- Prediction of Heterotrimeric Protein Complexes by Two-phase Learning Using Neighboring Kernels
- Grammar-based Compression for Multiple Trees Using Integer Programming
- Grammar-based Compression for Multiple Trees Using Integer Programming