附加物体のある梁の撓み振動時における応力分布(その1)
スポンサーリンク
概要
- 論文の詳細を見る
We have had some reports of the Western Reseach Commitee of Ship Structure concerning with the damages of cracks, on the stiffened bulkhead at the neighbours of the joint with stiffeners. One of the causes of these damages is the fatigue fracture which is caused by the vibration of the plate, associated with the torsional and bending vibration of the stiffeners. To make this cause clear, we have to know the stress distribution on the stiffener when it is vibrating. In a preparation of this attempt, this report shows the natural frequencies and stress distribution of the beam, both ends are free supported, and attached with the added mass of angle section corresponding to the cross section of the stiffener, by applying the dynamical equation of slope deflection method. We defined the following three nondimentional parameters, K_M=m_s/m_b, K_R=Θ_A/(m_bl^2), K_G=(m_sy_A)/(m_bl) where, m_s: mass of the added body, m_b: mass of beam at the length l, l: corresponding to the stiffener space, Θ_A: mass moment of inertia of added mass around the joint, y_A: eccentricity of the centre of gravity of the added mass at horizontal direction. These value of the actual vesseles are shown in Fig. 1 and Fig. 2. For four examples, shown in Table 1, the eigenvalue βS calculated are shown in Fig. 6 and mode and stress distribution is shown in Fig. 7〜Fig. 10. This made it possible to conclude that: 1. For the K_M and K_R corresponding to the ordinary stiffened structure of the vessel, in the first and the second mode, added mass acts as the concentrated load and concentrated moment respectively, and in the third or more mode, will be almost fixed. 2. Accordingly the stresses produced at the neighbours of joint is considerably large. 3. Assuming the fatigue limit as σ_F=22kg/mm^2, when the maximum dynamical stress of the vibrating beam is that fatigue limit, the ratio of the maximum deflections of the beam to the stiffener space are 2.88×10^<-2>〜7.25×10^<-2>, 7.00×10^<-2>〜2.0×10^<-2>, 4.0×10^<-3>〜7.7×10^<-3> for the 1st, 2nd and 3rd mode, respectively, as shown in Table 2. 4. But the assumed fatigue limit is the value in the ideal condition, and so this value will decrease to 1/2〜1/3 in the actual conditions, considering the shape factor, the change in quality of materials by welding and the influence of corrosion. Thus it is conceivable that the fatigue fracture of the stiffened plate may be caused by local vibration of ship. We are now analyzing the dynamical stress distribution at free vibration of the beams having many added masses, and the actual stiffened plate. We will report in the next papers.
- 社団法人日本船舶海洋工学会の論文
- 1967-02-28
著者
関連論文
- 階段歩行の床反力特性 : 平地から階段, 階段から平地への過渡特性
- 床反力計による人間の階段歩行の実験的解析 : 歩行開始・停止期における平地歩行との特性比較
- 二足歩行の力学的研究 : 床反力とモデルによるアプローチ
- 人間の階段昇降時の体重心運動の床反力計による解析
- 人間の歩行開始・停止時の速度特性に関する実験的解析
- 人間の歩行開始・停止・方向転換時の床反力ピーク値と歩行速度の関係解析
- 歩行開始期の床反力と体重心の速度・変位の実験による解析 : 過渡期から定常期に至る特性
- 人間の歩行解析のための大型床反力計出力の一補正法
- ヒトの歩行開始・停止・方向転換時の特性 : 大形床反力計による実験と解析
- 大形踏力計による健常者の歩行特性の解析 : 第1報、前後方向踏力の特性
- 部分接水振動をする長脚柱の減衰を考慮した応答解析
- 底置型海洋構造物の動的応力解析(第2報) : 衝撃応答
- 底置型海洋構造物の動的応力解析(第1報)
- ある人身過失事故の力学的解析
- 防撓板の振動時における応力分布(第3報)
- 防撓板の振動時における応力分布(第3報) : ウェッブ・フレームを含んだ場合
- 巨大タンカーの耐衝突強度(I)
- 防撓板の振動時における応力分布(第2報) : 有効幅について
- 防撓板の振動時における応力分布(第1報)
- 附加物体のある梁の撓み振動時における応力分布(その3) : 附加物体が弾性体の場合
- 附加物体のある梁の撓み振動時における応力分布(その2)
- 附加物体のある梁の撓み振動時における応力分布(その1)
- Stuttgart 大学と ISD-ASKA
- 球殻構造物のフレームの応力解析