Prediction of non-canonical polyadenylation signals in human genomic sequences based on a novel algorithm using a fuzzy membership function(BIOINFORMATICS)
スポンサーリンク
概要
- 論文の詳細を見る
Computational prediction of polyadenylation signals (PASes) is essential for analysis of alternative polyadenylation that plays crucial roles in gene regulations by generating heterogeneity of 3'-UTR of mRNAs. To date, several algorithms that are mostly based on machine learning methods have been developed to predict PASes. Accuracies of predictions by those algorithms have improved significantly for the last decade. However, they are designed primarily for prediction of the most canonical AAUAAA and its common variant AUUAAA whereas other variants have been ignored in their predictions despite recent studies indicating that non-canonical variants of AAUAAA are more important in the polyadenylation process than commonly recognized. Here we present a new algorithm "PolyF" employing fuzzy logic to confer an advance in computational PAS prediction - enable prediction of the non-canonical variants, and improve the accuracies for the canonical A(A/U)UAAA prediction. PolyF is a simple computational algorithm that is composed of membership functions defining sequence features of downstream sequence element (DSE) and upstream sequence element (USE), together with an inference engine. As a result, PolyF successfully identified the 10 single-nucleotide variants with approximately the same or higher accuracies compared to those for A(A/U)UAAA. PolyF also achieved higher accuracies for A(A/U)UAAA prediction than those by commonly known PAS finder programs, Polyadq and Erpin. Incorporating the USE into the PolyF algorithm was found to enhance prediction accuracies for all the 12 PAS hexamers compared to those using only the DSE, suggesting an important contribution of the USE in the polyadenylation process.
著者
-
Kamasawa Masami
Department of Biotechnology and Environmental Chemistry, Kitami Institute of Technology
-
Horiuchi Jun-ichi
Department of Biotechnology and Environmental Chemistry, Kitami Institute of Technology
-
Horiuchi Jun-ichi
Department Of Biotechnology And Environmental Chemistry Kitami Institute Of Technology
-
Kamasawa Masami
Department Of Biotechnology And Environmental Chemistry Kitami Institute Of Technology:toyo Engineer
関連論文
- Prediction of non-canonical polyadenylation signals in human genomic sequences based on a novel algorithm using a fuzzy membership function(BIOINFORMATICS)
- Dynamic analysis of the silver staining gel image of 2-DE for protein spots segmentation
- Effective Cell Harvesting of the Halotolerant Microalga Dunaliella tertiolecta with pH Control
- Dynamic adsorption and desorption behavior of protein on carbonate-containing apatite
- Desorption properties of BSA and LSZ on carbonate ion-modified apatite
- Performance of a Partially Packed Charcoal Pellet Bioreactor for Acetic Acid Fermentation
- Effective Onion Vinegar Production by a Two-Step Fermentation System
- Continuous Acetic Acid Production by a Packed Bed Bioreactor Employing Charcoal Pellets Derived from Waste Mushroom Medium
- New Vinegar Production from Onions
- Industrial Application of Fuzzy Control to Large-Scale Recombinant Vitamin B_2 Production
- Fuzzy Modeling and Control of Biological Processes(BIOCHEMICAL ENGINEERING)
- Selective production of lactic acid in continuous anaerobic acidogenesis by extremely low pH operation(BIOCHEMICAL ENGINEERING)
- Proteome Analysis of Threonine-Limited Lysine Fermentation by Brevibacterium flavum Using Two-Dimensional Electrophoresis
- Modeling of Churning Machine Control by Experienced Operators in Industrial Butter Production Using an Artificial Neural Network