体積力法による偏心き裂をもつ長方形単位領域の解析
スポンサーリンク
概要
- 論文の詳細を見る
In this paper, we consider a rectangular unit region with an eccentric crack. In the analysis, we use the complex stress potentials in Taylor series expansions satisfying the external loads and displacements at the outer edges of the rectangular unit region, and Body Force Method (BFM) by satisfying the traction-free conditions of the crack edges. At this stage, we use a procedure based on element-wise resultant forces and displacements in order to get highly accurate results. Numerical calculations are performed for various combinations of the parameters. The results of the stress intensity factors and the tensile stiffnesses of the solids with the cracks are summarized as forms ready for practical use. The accuracy of the numerical results confirms the utility of this approach.
- 久留米工業大学の論文
- 2000-12-20
著者
関連論文
- 長方形配置および千鳥配置のだ円孔群をもつ無限体の引張り : 最大応力と引張剛性の計算式
- 長方形配置および千鳥配置のき裂群をもつ無限体の面内せん断における応力拡大係数とせん断剛性の計算式
- 周期配列の剛体扁平介在物群をもつ無限体の引張り
- 境界要素法を援用した光弾性主応力解析
- 複数個のき裂をもつ長方形板の引張り
- 体積力法による偏心き裂をもつ長方形単位領域の解析
- Formulae of Maximum Stresses and Tensile Stiffnesses for Rectangular Array and Zig-zag Array of Elliptical Holes in Solids under Uniaxial Tension
- 長方形配置の円孔群をもつ無限体の引張り : 応力集中係数と引張剛性の計算式